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Abstract

Identifying key moments in large-scale datasets is very important in making collected
data usable by other systems. In this thesis, multiple state-of-the-art anomaly detec-
tion and irregularity analysis techniques are applied to the vehicular and pedestrian
tra�c video surveillance domain. Additionally these techniquse are also evaluated on a
new vehicular surveillance video dataset. The resulting evaluation of these techniques
presents unique bene�ts and drawbacks of using speci�c methods for the target use
case of this thesis and shows how such a system can be used in conjunction with other
components to generate an autonomous end-to-end scenario database. This database
can contain actor trajectory-, video- and metainformation of relevant recorded scenes.
Additionally, this thesis reveals a clear underrepresentation of video anomaly detection
techniques in the open-source community. To �ll this white spot, a general and adapt-
able open-source framework for training and using video anomaly detection machine
learning models is provided. The framework covers a wide selection of di�erent video
anomaly detection neural network architectures, both complex and minimalistic. In-
corporating state-of-the-art packaging and documentation tools makes the framework
easily accessible to users.
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CHAPTER 1

Introduction

1.1 Collaboration with e:fs TechHub GmbH

Figure 1.1: Concept visualization of the
digital twin the SAVeNoW project tries
to create.

This master's thesis is the result of a col-
laboration with e:fs1 and the University
of Applied Sciences Landshut. e:fs is a
joint venture company of AKKA Technolo-
gies and CARIAD SE , a member of the
Volkswagen Group. The thesis is part
of a combined e�ort called SAVeNoW 2.
SAVeNoW is state-subsidized by the Fed-
eral Ministry of Transport and Digital In-
frastructure of Germany. The overall goal
of SAVeNoW is to construct a digital twin
of Ingolstadt. The twin is constructed by
leveraging multi-sensor observations across
Ingolstadt. Besides visualizing the mea-
sured reality of the tra�c situation in Ingolstadt, the historical data can also be used
to run simulations on real data (Montanari et al., 2021). Concept visualization of the
system is shown in �gure 1.1. Even though collecting large amounts of data is great
for many use cases, not every data point or series of data points is equally impor-
tant. That's why it's of critical importance, to have a method to �lter out relevant
scenarios. This thesis primarily focuses on processing video data from a single tra�c-
surveillance camera (sometimes referred to as FKK 3) located and pointed towards a

1e:fs TechHub GmbH
2Members of the SAVeNoW project are 3-D-Mapping Solutions GmbH, ASAP Engineering

GmbH, Conti Temic microelectronic GmbH, Deutsches Zentrum für Luft- und Raumfahrt, e:fs Tech-
Hub GmbH, Frauenhofer-Institut für Verkehrs- und Infrastruktursysteme, Katholische Universität
Eichstätt-Ingolstadt, sepp.med GmbH, Technische Hochschule Ingolstadt, TWT GmbH Science &
Innovation, Technische Universität München, Universität Stuttgart

3abbr. for �Forschungs-Kreuzungs-Kamera� (engl. Research-Intersection-Camera)
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single intersection in Ingolstadt. The conceptual goal is to identify irregular events or
situations captured by the camera stream. In the future, such a system could be used
in conjunction with the previous master's thesis by �Perspective-Corrected Extraction
of Trajectories from Urban Tra�c Camera Using CNN� (Strosahl et al., 2022), which
also originated from the SAVeNoW research project. The thesis focused exclusively
on actor trajectory extraction of the FKK video-stream4. Figure 1.2 shows how the
results of this thesis could be combined with �Perspective-Corrected Extraction of
Trajectories from Urban Tra�c Camera Using CNN� (Strosahl et al., 2022) to form
an end-to-end video processing system, that encompasses anomaly detection and ac-
tor trajectory extraction. In a future e�ort, this system could be extended to multiple
simultaneous camera streams.

Figure 1.2: This concept diagram shows how the results of this thesis could be inte-
grated with already existing company infrastructure. The anomaly detection system
of this thesis (green) is used to trigger other systems that are already existing or
planned. The resulting pipeline can automatically identify, process and persist inter-
esting footage captured by a live stream camera.

1.2 Formal Problem Statement

Figure 1.3: OpenStreet-Map view of
the �Forschungs-Kreuzung� intersection.
Source: openstreetmap.org

As previously stated in chapter 1.1, the
primary goal of this thesis is to provide
a way for e:fs, to identify and extract
video-clips from a camera-stream (�g-
ure 1.4) in which actors exhibit anoma-
lous (see 1.2.2) behavior. In the con-
text of this thesis, actors are de�ned as
autonomous objects or individuals that
participate and interact with public traf-
�c. Some basic examples would be cars,
cyclists or pedestrians. The anomaly
detection research �eld is already well-
established and o�ers a variety of di�er-
ent approaches. Especially anomaly de-
tection on vehicular tra�c situations is a

4Open-source repository: https://github.com/jul095/TrafficMonitoring
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research subject many companies are ac-
tively interested in. (Naphade et al., 2020; Zhao et al., 2021; Wu et al., 2021a) The
tra�c intersection this thesis is targeted towards (�gure 1.3), features multiple lanes
and complex actor behavior. The camera is mounted on top of a nearby building
pointed toward the intersection, providing a good overview of all relevant areas for
tra�c surveillance. The system this thesis is trying to establish should work based on

Figure 1.4: An excerpt frame of the surveillance camera's view over the Hindenburg-
Ringlerstraÿe intersection in Ingolstadt.

the RGB video stream provided by the tra�c surveillance camera, implying that the
system has to work purely on pixel-level without any additional information like, for
example, depth information or actor GPS annotations. Even though a single intersec-
tion is targeted, the system should be able to be applied to most similar environments
with only minor adjustments. Adjustments could involve changing minor system pa-
rameters or for instance, performing retraining on an existing machine-learning model
architecture.

1.2.1 Choice of Perspective

Video footage, typically encountered in image-based vehicular anomaly detection can
be di�erentiated between three di�erent camera perspectives.

1. Scenes that are captured from an egocentric perspective. A common example
would be video footage �lmed from cameras mounted behind car windshields.
Modern cars with advanced driver assistance software often possess additional
sensors that can be leveraged.

2. The perspective of a static camera with a �xed view of a tra�c scene. Most
of the time this footage comes from (tra�c-) surveillance cameras. (Naphade
et al., 2018) Often the camera is mounted at an angle, this implies that objects
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are a�ected by the camera's perspective in the form of signi�cant perspective
distortion.

3. The third and most uncommon perspective is a top-down view of a tra�c scene
without any signi�cant perspective in the scene. A good provider for this type
of footage could be a drone equipped with a bottom-facing camera.

The second and third perspectives o�er the best overview of the scene. Egocentric
ground-level perspectives tend to be more susceptible to visual obstructions. The
absolute top-down perspective also has the bene�t, that all objects are scaled equally.
Assuming that the distance to the ground is constant across all footage taken. Con-
volutional neural network architectures, often used for image processing are especially
susceptible to di�erently scaled objects in a scene.

The e:fs use-case this thesis is targeted towards, is based on the second perspective
previously listed. That's why the proposed systems of this thesis are also primarily
designed to work with said perspective. Although, e:fs also has drone footage available
for potential experiments.

1.2.2 De�nition of Anomaly

The Cambridge Dictionary de�nes �Anomaly� as the following:

A person or thing that is di�erent from what is usual, or not in agreement
with something else and therefore not satisfactory.

Because this thesis works primarily with unannotated data, separation into di�er-
ent types of anomalies is not feasible. The algorithm will �nd its own �de�nition�
of an anomaly by learning a probability distribution P ′ from training data P . All
sampled data points that di�er signi�cantly from distribution P ′ are classi�ed as
anomaly candidates by the algorithm. Subsequently, the input data should contain
as few anomalies as possible, so that the algorithm will not learn a distribution in
which anomalies are present. This approach is common in the unsupervised anomaly
detection problem space.

1.3 Strategy

1.3.1 Why is Machine-Learning suitable for Video Vehicular
Anomaly Detection

Especially with machine learning projects, it's often advisable to re�ect on if it's even
appropriate to solve a problem with the help of machine learning techniques. Often
classic algorithms are more performant, predictable and maintainable, while also not
requiring the amount of training data a machine-learning solution would require.

Image data is very informationally dense and therefore hard to abstract with-
out any machine learning techniques. Especially the convolutional neural network
architecture dominates classic object detection computer vision algorithms in both
performance and usage in the industry (Szeliski, 2011; Zou et al., 2019). Its ability
to abstract very high-level information from low-level input space is very valuable

4



for computer-vision problems. But this thesis primarily tackles the anomaly detec-
tion problem and not an abstraction problem over the video data space. Therefore,
a hybrid approach, in which the abstraction would be done with a state-of-the-art
object detector and the anomaly detection would be purely done by a hand-crafted
algorithm.

For example, a rule-based agent could identify if a car's spatial coordinate/trajectory
is allowed for a timepoint T . Anomalies could then even be categorized into classes.
For example: The complexity of each category would be dependent on the imple-

Anomaly Description Spatial Context Temporal Context

car runs red light ! !

pedestrian present in an illegal position !

actor stops without any reason ! !

vehicle ignores the right of way ! !

mentation complexity. A major drawback of such a system would be that someone
has to manually segment a static scene into di�erent regions and maybe even im-
plement scene-speci�c rules. An end-to-end machine-learning-based approach doesn't
need any manual intervention and may be even able to learn non-static perspectives
while also generating �rules� for performing anomaly detection automatically. There
are good points for using either one of the approaches mentioned. A system in which
both approaches are combined would be possible as well. This thesis focuses solely on
uncategorized anomaly detection techniques. If one would be interested in di�erenti-
ating between di�erent anomaly categories (like the ones in table 1.3.1) a supervised
machine learning approach would be more �tting.

1.3.2 Methodology Summary

To �nd a working model architecture, strong inspiration is taken from various other
scienti�c publications. The found architecture candidates are then implemented (see
chapter 6). To ensure that the proposed arti�cial neural network architectures are
implemented correctly, �rstly training and evaluation on datasets that are used in lit-
erature are performed. As soon as it is ensured that the implementations are correct,
progress can be made to examine whether the architecture is suited for the vehicular
surveillance camera domain. To do so, �rst, an evaluation on the publicly available
vehicular tra�c anomaly detection dataset Street Scene (see 4.1.3) is performed. The
primary motivation behind this is to have a baseline for other anomaly detection
approaches that share the same domain. Lastly, each proposed architecture is evalu-
ated on the, FKK dataset (see 4.2) that was introduced in the context of this thesis.
Therefore, the resulting artifacts of this thesis are

1. correct implementations that are accessible as part of the video anomaly detec-
tion framework

2. objective evaluation between the implemented architectures based upon di�erent
use-cases/datasets

3. a FKK model candidate that is su�cient for the requirements set by e:fs
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1.4 Contributions to the Scienti�c Community

As previously stated anomaly detection is a widely established �eld in the machine
learning research community. Especially the automotive space is highly interested in
identifying anomalous events. Potential use cases include:

◦ Anomalous sound/vibration signatures in engines (Malhotra et al., 2016)

◦ Vehicular anomaly detection based on ECU data (Narayanan, Mittal, and Joshi,
2016)

◦ Trajectory anomaly detection (Fu, Hu, and Tan, 2005)

Many of these publications work on information sparse data compared to video data.
Therefore, an abstraction layer is often not necessary. Video data, on the other hand,
is much more information dense and a well-performing abstraction layer is key so
that the anomaly detection system is even able to work properly. This of course
adds another layer to the already complex anomaly detection problem and therefore
increases the complexity of the machine learning model as well.

1.4.1 Anomaly Detection on Vehicular Tra�c Surveillance Cam-
era Footage

There is already a couple of recent research works that tackle the surveillance camera
anomaly detection problem. However, most are primarily targeted toward the highway
surveillance video domain (Zhao et al., 2021; Wu et al., 2021b; Li et al., 2020a; Aboah
et al., 2021). This is problematic because the highway setting is drastically di�erent
from the urban setting. Not only are there a greater variety of di�erent types of actors
in an urban setting, but most publications make the assumption, that if an anomaly
occurs the car will eventually come to a full stop. (Zhao et al., 2021) An assumption
like this simpli�es the underlying problem because a background modeling algorithm
(Adi et al., 2018) in combination with a vehicle/object detector is mostly su�cient for
solving the anomaly detection problem. Making the assumption may be reasonable for
the highway environment but in urban scenarios, actors come to a full stop regularly.
Especially for tra�c surveillance cameras pointed toward a tra�c intersection. There
are some, but few approaches that explore a more urban environment (Pourreza,
Salehi, and Sabokrou, 2021). Background modeling algorithms are barely used in this
setting because the underlying actor behavior is much more complex than the one
typically encountered in the high-way scenario.

1.4.2 Video Anomaly Detection

Most anomaly detection systems that are applied to video footage, work by using a
type of autoencoder that leverages convolutions as abstraction layers. Anomalies that
these systems can identify are often of class:

◦ unknown object present in a scene

◦ fast movement present in a scene
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Both of these anomaly types don't necessarily require a high-level understanding of a
given scene. For this thesis identifying only these types of anomalies is not su�cient.
Vehicular anomalies often require a deep contextual understanding of spatial and
temporal information. For example, a car at a certain position could be perfectly
�ne for a point in time T but an anomaly for a future time T + 1. A more in-depth
explanation of why certain model architectures were chosen as candidates can be
found in chapter 6.
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CHAPTER 2

Development Environment

2.1 Dependency and Virtual Environment Manage-

ment

Python heavily relies on its package manager pip. pip allows users to easily install
packages via a usual package manager cli. Unfortunately pip struggles with resolv-
ing dependencies in a con�ict-avoiding way. This can result in installed libraries not
behaving properly, often without emitting any kind of warning or error. There are
a handful of wrapping libraries that abstract the pip API, to allow the user to au-
tomatically install dependencies for them into a virtual environment (like pipenv).
A recent promising project called Poetry1 tries to solve the issue of resolving project
dependencies and making it easy to create reproducible builds. This is done via a
pyproject.toml �le in which all the information, like dependencies, development de-
pendencies and various metadata values are stored. If an object in the dependency
tree changes, the resolver �nds a set of installation candidates that ful�ll version re-
strictions and on success, creates a .lock �le in which all dependency package versions
are �xed. This way a second developer can exactly reproduce the versions of all de-
pendencies with a single command (poetry install). If one wants to package the
project into a distributable Python package, simply invoking poetry build su�ces.

In hindsight, the choice to use Poetry as the package management solution was
not optimal compared to frameworks like anaconda. This is mainly caused by not
needing/using features like package building or publishing. Instead, an abstraction
over CUDA would have been more useful.

2.2 Choice of Machine Learning Framework

The most popular and widely used machine learning frameworks occupying the Python
domain, are PyTorch, TensorFlow and SciKit-Learn. Because this thesis mainly works

1https://python-poetry.org
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with arti�cial neural networks and SciKit-Learn provides mainly classical machine
learning algorithms, the choice lies primarily between Tensor�ow and PyTorch. Both
frameworks provide an ecosystem of additional tools provided either by the community
or by the vendors themselves. For this thesis PyTorch is chosen, based on the more
pythonic2 API compared to the on Theano based library TensorFlow. PyTorch allows
users to perform complex mathematical operations through a functional interface that
is automatically di�erentiable, a key attribute for arti�cial neural networks. Addition-
ally, wrapper libraries like PyTorch-Lightning (also mentioned in chapter 5.5 & 2.7)
further abstract logic like data loading and distributed training. Handling and manip-
ulating video data becomes also very easy with specialized libraries like torchvision.
An alternative machine learning ecosystem that focuses on arti�cial neural networks
is the previously mentioned Tensor�ow framework. Because some prior researched
architecture implementations were already implemented for the PyTorch framework
by either the community or already included in the framework but missing from Ten-
sor�ow, the choice ultimately fell on PyTorch. Potential selling points of Tensor�ow
like the potential to rely on the Google Cloud and its TPU3 hardware infrastructure
didn't a�ect the choice in any way because there were no plans to use the Google
Cloud for training.

2.3 Test-Suite

Figure 2.1: Visual cover-
age report.

To ensure that all the implemented components found in
this project are working as intended, a PyTest test suite
is introduced. The test suite contains unit tests and in-
tegration tests and can be invoked with the pytest com-
mand. Statement test coverage reports are automatically
generated and can either be viewed as an exported .html

document. To guarantee a high code quality throughout
the main line4 of the project, automatic testing via a CI5

environment is employed. Not only does the CI pipeline
reject commits that fail tests but it also submits a cover-
age report to coverage.io. There the coverage report gets
analyzed and users can view a nice visualization depicted
in �gure 2.1.

2.4 Visualizing Training Analytics

through Tensorboard

Visualization of training progression and intermediate training artifacts is done with
the from TensorFlow originating Tensorboard analysis tool. PyTorch supports storing
training logs and artifacts in Tensorboard natively. Tensorboard provides a dynamic

2Pythonic describes an idiomatic style of programming found in Python.
3abbr. for Tensor Processing Unit
4In this context main line refers to the git branches main and develop.
5abbr. for continuous integration
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view of various loss functions during training and is also able to display video infor-
mation. This allows for fast debugging and experiment iteration cycles.

2.5 ML-Flow

Figure 2.2: ML-Flow training job comparison of a hyper-parameter optimization job.

Even though Tensorboard is a great tool for visualization artifacts and training
progression, managing a signi�cant history of di�erent types of training runs is not
easily doable. Especially for hyperparameter tuning jobs, in which you typically have a
large number of training jobs, comparing these e�ciently to identify the most optimal
model is crucial. This white spot is �lled with the use ofMl-Flow. Among other things,
Ml-Flow provides a web interface in which training runs can be grouped, compared
and �ltered. Logging to Ml-Flow can be done with a logger class that is provided by
the mlflow Python package and is wrapped by PyTorch-Lightning to automatically
log to Tensorboard and Ml-Flow simultaneously. Installation of Tensorboard and Ml-
Flow is automatically handled by Poetry (chapter 2.1). Accessing the web interface
can be done with either the tensoboard --logdir logs or mlflow ui command,
based on the desired framework.

2.6 Python Documentation

To provide developers with documentation on how to use various components im-
plemented in the context of this thesis, a HTML documentation is provided. An
excerpt of this documentation can be found in appendix B. To keep the documenta-
tion up-to-date continuously, the documentation gets partly automatically generated
and therefore can be updated automatically via various continuous integration tools
and platforms. Sphinx 6, a tool specialized for generating documentation by pars-
ing Python DocStrings is used as a generation tool. Compared to alternatives like
pydoc7, Sphinx supports more sophisticated parsing techniques like for example docu-
mentation inheritance. The documentation gets automatically regenerated by GitHub

6https://www.sphinx-doc.org/en/master/index.html
7https://docs.python.org/3/library/pydoc.html
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Actions work�ows as soon as a code base change is detected on the main branch of
the project. An excerpt of the generated HTML documentation for a single module is
provided in appendix B. Guides on how to use the project's components, for example
how to train an implemented architecture on custom datasets are also provided in
this documentation.

2.7 Training

Most of the later introduced neural network architectures require non-trivial training
procedures. Because of the data throughput and processing power required by the
machine learning models, training on a CPU is unfeasible. Even though training on
a single GPU o�ers signi�cant training time improvement, being able to distribute
the training process between multiple GPUs becomes key to e�ciently develop and
evaluate model variants. There is a wide variety of di�erent techniques to distribute
training between di�erent processing units. The implementations are non-trivial and
that's why this thesis relies on external packages to handle di�erent distribution tech-
niques. More speci�cally the PyTorch Lightning8 framework, a wrapper module over
PyTorch that seamlessly integrates into the PyTorch eco-system. PyTorch Lightning
o�ers DP (Data Parallel) and DDP (Distributed Data Parallel) training distribution
strategies. Data Parallel splits a single batch into one for each GPU and then dis-
tributed model and input data to each one. After each GPU computes the forward
and backward pass, the weights are sent back to the main process and averaged. The
main process then computes the weights update and a single training cycle has �n-
ished. Because this method sends a lot of data between GPUs and the main process
for each training step (model weights, training data and weight gradients) signi�cant
overhead is introduced. Figure 2.3 visualizes the DP training loop. DDP introduces

Figure 2.3: Visualization of the Data Parallel distribution strategy.

a method that reduces overhead signi�cantly by reducing the amount of transmitted

8https://www.pytorchlightning.ai
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data. Figure 2.4 shows how DDP synchronizes all the computed gradients across
GPUs and then performs the weight update on each process individually.

Figure 2.4: Visualization of the Distributed Data-Parallel distribution strategy.

2.8 Hyper-Parameter Tuning

Similar to model training (chapter 2.7), Most models introduced in this thesis have
multiple non-trivial hyperparameters. Examples would be loss function weights, input
timesteps, frame strides, etc.. Finding a good parameter con�guration for a dataset
and model architecture manually is unfeasible because of the enormous search space.
Therefore, an automated hyperparameter tuning approach is required. The ray9

machine learning framework integrates nicely into the PyTorch/PyTorch-Lightning
ecosystem and implements state-of-the-art hyperparameter optimization techniques
in the context of the ray-tune10 submodule. Hyperparameter optimization runs can
even be distributed across multiple GPUs, which leads to signi�cantly faster iteration
times. Ray explores the hyperparameter search space by primarily either performing
a grid or random search. Publications have shown, empirically and theoretically that
random search is more e�cient for most hyperparameter optimization problems com-
pared to manual or grid search (Bergstra and Bengio, 2012). Grid search performs
an exhaustive search over a well-de�ned search space. Random search on the other
hand randomly samples hyperparameter con�gurations out of a previously de�ned dis-
tribution. Hyperparameter optimization is performed after �nding a non-optimized
but empirically working model architecture. Ray will generate a new hyperparameter
con�guration for every training run and train every model variant for a �xed number
of epochs. After a previously set, time or model variant limit, ray will compare every
trained model by evaluating it based on the AUROC score (Bradley, 1997) achieved
over the test dataset. Hyperparameter con�gurations can be found in chapter 8.

9https://docs.ray.io/en/latest/index.html
10https://docs.ray.io/en/latest/tune/index.html
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CHAPTER 3

Theoretical Background

As stated earlier the goal of this thesis, is to create a system that can assess the
regularity of a recorded scene. Therefore, the regularity function r will map a frame
sequence to a probability variable.

r : RT×C×H×W → R

Some approaches may even be able to not only asses the regularity of the entire
scene but each timestep t ∈ T in the scene. The regularity function then maps to T
probabilities for each timestep in the input sequence.

r : RT×C×H×W → RT

To derive the anomaly score we can use a mapping a : R → R from regularity score
to anomaly score de�ned as a(x) = 1− r(x). Because this transformation is trivial, it
doesn't matter if an approach tries to detect regularity or anomalies.

Anomaly detection, a.k.a. outlier detection or novelty detection, is referred
to as the process of detecting data instances that signi�cantly deviate from
the majority of data instances. (Pang et al., 2021)

3.1 Anomaly Detection Introduction

Anomaly detection algorithms can be di�erentiated between deep learning based
anomaly detection, sometimes also referred to as deep anomaly detection and classical
anomaly detection techniques. In this thesis, we focus on deep anomaly detection.
There are a variety of di�erent neural network techniques potentially suited for the
anomaly detection problem set. Examples include:

◦ Autoencoders

◦ Generative adversarial networks (GANs)
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◦ Softmax likelihood models

◦ . . .

Pang et al. (2021) and Chandola, Banerjee, and Kumar (2009a) di�erentiates between
three di�erent types of anomalies.

1. Point anomalies, are individual data points that individually di�er from other
data points. For the vehicular surveillance camera domain, a typical point
anomaly would be an anomalous object in a captured image. The anomalous
object is considered an anomaly independent of the overall context. Detection
of point anomalies doesn't even require temporal context and therefore anomaly
detection can be performed on individual frames.

2. Conditional anomalies are data points that are only considered anomalous if
a set of conditions is ful�lled, that's why conditional anomalies are sometimes
also referred to as contextual anomalies. This anomaly type is highly relevant
for this thesis because many tra�c anomalies are dependent on the context. For
example, a car passing under a red tra�c light is only anomalous because the
tra�c light is red.

3. Group anomalies are data points that are on their own not anomalous, but as
soon as they form a distinct group they become anomalous. For example, spam
mail on its own is not anomalous but most spam mails share features among
them, which makes them identi�able. This anomaly category is not necessarily
a type that is encountered with tra�c surveillance footage. An example of group
anomalies that share the tra�c domain would be tra�c congestion anomalies
(Chen et al., 2019).

For this thesis especially the type point and conditional anomaly type is relevant.

3.2 Related Scienti�c Work

Anomaly detection isn't a novel problem that computer scientists and more speci�-
cally the machine learning community are trying to solve. However, it seems like it
may not get as much attention as other similar research �elds. This may originate
from unsupervised anomaly detection being an overall hard problem to solve because
most underlying data often requires unsupervised or self-supervised machine learning
techniques. The lack of labeled training data present in many anomaly detection use
cases often eliminates supervised approaches. Annotations are often behavior types
and are therefore used with behavior classi�cation systems. With the upcoming in-
terest in anomaly detection by industry sectors like the automotive industry, anomaly
detection gained increased popularity. The ability to detect anomalous and there-
fore often interesting events enables other machine learning systems to be trained on
higher-quality datasets. Anomaly detection can partially be seen as a gateway system
to improved datasets for other already existing systems.

Generally, anomaly detection systems try to learn a probability distribution P ′

by training on a dataset containing sampled data points from a regular distribution
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P . Irregular data points are not learned by the system and therefore the system is
unable to behave correctly. This incorrect behavior can be often trivially detected by
observing the behavior of the system compared to the real world. For example, an
anomaly detection system that is trained to predict car movement can predict regular
movements accurately but as soon as a car moves irregularly the prediction will not
be accurate anymore. In other words, the behavior of the real car is signi�cantly
di�erent from the behavior modeled by the system and consequently, this di�erence
can be used to infer whether the behavior that the car exhibits is anomalous or not.

Learning a probability distribution is signi�cantly easier if the distribution's di-
mensional complexity is low (Chandola, Banerjee, and Kumar, 2009b). Because video
data is very informationally dense and contains spatial and temporal relations across
feature dimensions, the video anomaly detection problem is especially challenging.
In the past, a few publications were made towards solving the video anomaly detec-
tion problem speci�cally, but because limited anomaly detection datasets are publicly
available not a wide variety of di�erent use cases has been explored thoroughly yet.
There primarily use cases/datasets the science community is working on are:

◦ pedestrian behavior anomalies (including foreign objects as anomalies) (Yuan
et al., 2021; Hasan et al., 2016)

◦ vehicular anomalies from an egocentric perspective (Haresh et al., 2020)

◦ (highway) tra�c surveillance footage anomaly (Zhao et al., 2021; Wu et al.,
2021b; Li et al., 2020a; Aboah et al., 2021)

◦ rural tra�c surveillance footage anomaly (Pourreza, Salehi, and Sabokrou, 2021;
Salas et al., 2007)

Of course, some publications work on other problems but most of the signi�cant
publications evaluate their approach on some of these use cases (and corresponding
datasets). More information about the di�erent datasets available to evaluate anomaly
detection systems on, are described in the following chapter 4.

Even though multiple approaches were proposed by various publications over the
last years (Arnab et al., 2021; Haresh et al., 2020; Park et al., 2021), there is a tangi-
ble lack of high-quality neural network architecture implementations targeted toward
anomaly detection and more speci�cally towards the video medium. Some sparse
implementations are available as open-source repositories, but are often published in
conjunction with publications and are not necessarily designed for adaption to new
use cases. Implemented architectures that are publicly available are often very basic
and can't be described as state-of-the-art. Some notable implementations are:

◦ https://github.com/hashemsellat/video-anomaly-detection

◦ https://github.com/aseuteurideu/STEAL

The lack of general video anomaly detection frameworks is a clear identi�ed white spot
in the machine learning community and the resulting code from this thesis attempts
to �ll this blank with neural network architecture implementations that are:

◦ constructed out of modular and reusable components
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◦ easy to use and should require minimal to no code to get acceptable results

◦ conform to the usual PyTorch APIs

3.3 Architectures

In this chapter some theoretical concepts on neural network layer architectures are
elaborated on that will be later used in chapter 6.

3.3.1 Image Convolutions

The convolution operation (Fukushima, 1980) is one of the most important elements of
today's computer vision techniques. Convolutional neural networks can learn spatial
features very e�ciently. The e�ectiveness of the convolution operations led to an
almost complete displacement of traditional computer vision algorithms for tasks like
object detection or segmentation and many others (Li et al., 2020b). A convolution
operation extracts higher-level spatial features from the input image. It does so by
multiplying an extract from the image Ii,j ∈ Rk×k with a weight matrix of the same
size W ∈ Rk×k and calculating the average value of the resulting 3 × 3 matrix. This
procedure is repeated as a sliding window procedure over the input image. The
resulting averaged values will make up the generated feature map. To extract multiple
features simultaneously, multiple �lters can be used. Consequently, the convolution
operation will result in multiple output feature maps. Figure 3.1 shows an example
of how a single feature map pixel gets generated. Stacking convolution operations

Figure 3.1: A visualization of how a convolution on a single window results in a feature
map pixel.

on top of each other enables the system to learn even higher-level features. This, for
example, allows the network to di�erentiate between di�erent object types. Because
the convolution operation only needs to store weights for processing a single extract
from the image it is quite e�cient.

3.3.2 Autoencoder Architecture

Most approaches for anomaly detection try to learn a probability distribution derived
from mostly regular data. With this learned knowledge about regularity, non-regular
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data points can be identi�ed e�ectively. The general autoencoder architecture has
historically proven to be a very e�ective and adaptable tool for learning essential
features about low-level data distributions. They do so, by trying to compress data
points taken from the input distribution into a much smaller representation also called
latent-space. This transformation is typically performed by the Encoder E module.
To generate gradients for the solver, a Decoder module D is used to transform the
latent-space representation of a data point x̂ = E(x) into the original input space.
Therefore, the Encoder will try to store the most useful information into a latent
vector by that the Decoder can construct the initial Encoder input. Assuming all
components are trained perfectly, the output of D should be equal to the input to
the E x = D(x̂). In summary, autoencoders try to minimize the distance d between
reconstruction and input.

min
d

D(E(x)) + d

Because the design is very unspeci�c, many other layer architectures can be used in
conjunction with the autoencoder design. For image synthesis tasks, convolutional
models like U-Net (Ronneberger, Fischer, and Brox, 2015), that follow the autoen-
coder design have achieved remarkable results at learning high-level information about
visual data distributions.

3.3.3 Recurrent Neural Networks with Convolutional Long Short-
Term Memory

The RNN1 (Rumelhart, Hinton, and Williams, 1986) neural network architecture has
proven to be very e�cient in processing streams of data of variable length. An input

Figure 3.2: Unrolled visualization of an RNN module M processing a series of 3 data
points.

to an RNN is a series of potentially variable length made out of individual �xed-sized
data points xi. Each data point xi is then passed into the RNN module M which
contains a hidden state hi. The hidden change is manipulated with every new data
point passed into the RNN module and therefore contains information about past
data points processed by the module. Figure 3.2 shows an unrolled2 visualization of
a RNN processing a series of 3 data points xi, xi+1, xx+2. RNNs only store weights

1abbr. for Recurrent Neural Network
2An unrolled representation of a cyclic neural network has all cycles removed by visualizing every

module at each step separately.
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to process a single data point at a time and simultaneously can compute a series of
data points that are dependent on each other. This makes them remarkably e�cient
for certain domains like the NLP3 �eld. Unfortunately, RNNs also can su�er from
computational stability issues like the exploding/vanishing gradients problem. That's
why an improved RNN sub-type, the LSTM architecture (Hochreiter and Schmid-
huber, 1997) was proposed. LSTMs contain a forget gate, which allows gradients to
�ow unchanged through a layer. This doesn't necessarily a�ect the exploding gradi-
ents problem but can help to avoid vanishing gradients. Convolutional LSTM (Shi
et al., 2015) networks are an adaptation of the original LSTM architecture for spatio-
temporal data. Not necessarily does spatio-temporal data only refer to video data as
shown by the original publication. Nevertheless, the convolutional LSTM architecture
is highly suited for processing frame-series (i.e. video) data with the e�ciency of a
typical LSTM architecture. A convolutional LSTM module replaces ordinary matrix
multiplication operations of a regular LSTM layer with convolution operations. The
LSTM architecture can easily be adapted to follow the autoencoder design previously
explained in chapter 3.3.2. Di�erent from the usual RNN use-case, RNN autoen-
coders don't predict a future state, but instead try to reconstruct the input series by
processing the latent space with various temporal recurrent modules (Malhotra et al.,
2016; Luo, Liu, and Gao, 2017).

3.3.4 Transformer Architecture & Attention Mechanism

In recent years the attention mechanism (Vaswani et al., 2017) and the related Trans-
former architecture revolutionized some machine learning research �elds. Especially
with NLP3 Transformer networks like GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020) achieved remarkable results in text generation and text transfor-
mation tasks. Older architectures that were based on RNN architectures like LSTM
or GRU 4 were surpassed signi�cantly by Transformer networks. Since then the Trans-
former architecture was adapted to other machine learning domains and proved itself
to be a viable new approach to many problem spaces (Arnab et al., 2021; Gong,
Chung, and Glass, 2021). The Transformer architecture and attention mechanism
try to solve a major drawback of RNN architecture types. As explained in chapter
6.3, RNNs operate on data sequences and information from past inputs is stored in a
memory (hidden) cell h. Because all past inputs are compressed into a single shared
cell, information from past inputs is diluted by newer inputs. Figure 3.3 visualizes
how the information of an input contained in the hidden cell h gets diminished over
time. This makes it more challenging for the architecture to learn temporal interac-
tions over a long temporal distance. The Transformer architecture doesn't su�er from
this problem and can learn long-distance temporal relations e�ciently and e�ectively.
The attention mechanism is one of the most important Transformer components that
warrant the previously mentioned e�ciency. An attention function is mapping a query
Q and key-value pairs, K and V to an output (Vaswani et al., 2017). Q and K are
used to compute weights for a weighted summation of V (details in 3.4) Some archi-
tecture details di�er depending on which attention function is used. Popular choices

3abbr. for Natural Language Processing
4abbr. for Gated Recurrent Unit
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Figure 3.3: Information at T − 4 gets passed through the network and every step
involves a lossy operation that reduces the information of xT−4 contained in hidden
state h.

Figure 3.4: Visualization of all operations that are necessary for the implementation
of either a scaled-dot-product or multi-head attention block. (Vaswani et al., 2017).
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are Scaled Dot-Product Attention and Multi-Head Attention (Vaswani et al., 2017).
The choice of which attention variant one chooses is based on a trade-o� between run-
time performance and theoretically learnable complexity. As depicted in �gure 3.4,
is the Multi-Head Attention module made out of multiple Scaled Dot-Product Atten-
tion modules connected in parallel. Every Scaled Dot-Product's input is additionally
passed through a linear projection layer. This enables the module to learn di�erent
relations simultaneously.

3.3.5 Graph NN & Graph Convolution

Figure 3.5: Graph construction example and spatial connections between actors.

The interaction between arbitrary actors can be modeled as a graph data structure.
Graph neural networks achieve great results on various use-cases (Wu et al., 2020;
Chen et al., 2019). Publications that apply graph neural networks to the video domain
include

◦ �Graph convolutional label noise cleaner: Train a plug-and-play action classi�er
for anomaly detection� (Zhong et al., 2019)

◦ �Graph neural network (GNN) in image and video understanding using deep
learning for computer vision applications� (Pradhyumna, Shreya, et al., 2021)

◦ �Zero-shot video object segmentation via attentive graph neural networks� (Wang
et al., 2019)

◦ �Uncertain graph neural networks for facial action unit detection� (Song et al.,
2021)

A signi�cant bene�t of using a graph data structure as an input to the autoencoder is
the reduced complexity compared to raw frames. Because anomaly detection on lower
complexity data distributions is more e�ective, graphs could be well suited for such a
problem. Typically each actor in a scene is transformed into a node V in a graph G.
Directed or undirected, potentially weighted edges E in the graph, model interactions
between various actors/nodes in a scene. Edges can not only model typical interactions
but also temporal and spatial a�liation between actors. For example, spatial distance
can be modeled as weighted undirected connections between nodes. To demonstrate
how e�ciently a graph can model a single image and part of its content let's construct
a graph from an image with 7 actors depicted in �gure 3.5. The graph is an undirected
adjacency graph of shape RN×N with N being the number of actors in the scene. If a
distance threshold is used, some connections can be set to 0 and therefore the resulting
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graph is rather sparse. The resulting adjacency matrix is also displayed in 3.5. To
reduce the memory footprint of the graph even further, a sparse representation of
shape RV×2 can be used to compress the graph to solely its connection between nodes.

Figure 3.6: A single graph con-
volution operation around a node
x0. This convolution is repeated
around every node in the graph.

The example, the graph G in �gure 3.5 would
result in a compressed matrix of shape R5×2. Op-
erations on graphs di�er greatly from regular ma-
trix operations typically encountered with arti�-
cial neural networks. This is because the data
structures the operations act upon are so di�er-
ent compared to regular neural networks. One
popular operation is the so-called graph convolu-
tion operation, an adapted variation of regular
convolution. The graph convolution operation is
not inherently di�erent from a conventional con-
volution typically encountered in computer vision
applications. An input image can also be seen as
a graph of connected pixels and a graph convo-
lution will yield the same return as a 2d image
convolution. Convolution can be described as an
operation that shares information across points of
a subset in the input space. For example, a kernel
size of 3×3 will update the point value as a weighted sum of all 8 adjacent points and
the point itself (see chapter 3.3.1). The selection of points in a regular convolution
is spatially restricted by the distance towards the center point and the chosen kernel
size. Graph convolutions remove this spatial restriction altogether. As a result points
of arbitrary spatial distance can share information. Because of the implicated com-
plexity, sharing information amongst all points in the input space is unfeasible and
a new restriction needs to be introduced. Each point has a list of other points it is
semantically connected to and objects update their information by a weighted sum of
connected points and itself. Figure 3.6 depicts the graph convolution operation ap-
plied around the node x0. Repeating the graph convolution by propagating the graph
through multiple layers will spread the information of each node xi further across a
connected cluster of a graph.
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CHAPTER 4

Datasets & Data Acquisition

4.1 Publicly Available Datasets

For the evaluation of the neural network architectures publicly available anomaly de-
tection datasets are used. Because these datasets are widely used by other scienti�c
literature, the results from other publications are used as a baseline for our anomaly
detection systems. As soon as comparable performance to other state-of-the-art re-
sults is achieved, the advancement toward training and evaluating the model on the
e:fs FKK dataset (chapter 4.2) can be made.

Name Source

UCSD Pedestrian 1 & 2 http://www.svcl.ucsd.edu/projects/anomaly/

dataset.html

Avenue Dataset http://www.cse.cuhk.edu.hk/leojia/projects/

detectabnormal/dataset.html

AIC21 Track 4 https://www.aicitychallenge.org

Street Scene https://www.merl.com/demos/

video-anomaly-detection

All datasets are available as PyTorch Lighting Data Modules (see chapter 5.5),
therefore it's not necessary to manually download and prepare the video data1.

4.1.1 UCSD Pedestrian Anomaly Dataset

The UCSD pedestrian dataset features two di�erent subsets of data UCSD 1 and
UCSD 2. Both contain monochrome video clips that feature pedestrians traversing
walkways. Anomalies are de�ned as cyclists, skaters or cars being in the scene. These
anomalies are only present in the test dataset of each UCSD subset. The test datasets
contain video footage with anomaly annotations.

1datasets that require some form of authentication are excluded
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Figure 4.1: Excerpt from the UCSD 2 dataset. Anomalies are marked in red.

Table 4.1: Length of the UCSD Pedestrian 1 & 2 train and test dataset.
Subset Train Length Test Length
UCSD 1 272s (34 videos Ö 8s) 288s (36 videos Ö 8s)
UCSD 2 128s (16 videos Ö 8s) 96s (12 videos Ö 8s)

The most signi�cant di�erence between both subsets, is that UCSD 1 is signif-
icantly harder, because of the perspective distortion. Refer to �gure 4.2 and �gure
4.1 for the di�erent camera perspectives. The UCSD dataset is used in many video

Figure 4.2: Excerpt from the UCSD 1 dataset. Anomalies are marked in red.

anomaly detection publications as one of the most important baseline performance
benchmarks. For this thesis, the dataset is especially relevant because the camera's
perspective matches that of the e:fs surveillance camera. To make the dataset easy
to access and download a UCSD PyTorch Lightning DataModule is provided. Refer to
chapter 5.5 for implementation details and usage examples.

4.1.2 CUHK Avenue Dataset

Similar to the previously described UCSD dataset, CUHK2 Avenue is also a very
prominent baseline dataset in the video anomaly detection problem space. The dataset
contains variable-length RGB footage taken from an eye-level perspective. Videoclips
contain pedestrians walking and standing in the camera's �eld of view. Anomalies are
people loitering and acting unusual (i.e. dancing or throwing). Although the camera's
perspective is static, occasional micro-vibrations are present throughout the dataset.
For some approaches, even small amounts of camera movement can have a signi�cant
impact on model performance. Compared to other datasets like UCSD the distribu-
tion between regular and irregular frames in the test dataset is heavily biased towards
regular frames. Only 30, 77% of a total of ∼ 15.000 frames in the test dataset contain

2abbr. for Chinese University of Honk Kong
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Figure 4.3: Excerpt from the Avenue dataset. Anomalies are marked in red.

irregular regions. This is why Precision-Recall is used as a performance metric with
this dataset compared to the Receiver-Operating-Characteristics during evaluation in
chapter 8.

Table 4.2: Length of the Avenue train and test dataset.
Dataset Total Length
Train ∼12min (16 videos)
Test ∼11min (21 videos)

4.1.3 Street Scene (Ramachandra and Jones, 2020)

Although the Street Scene dataset is not widely used in video anomaly detection
publications, it is a valuable dataset for this thesis because it shares the same domain
as the e:fs use-case. The dataset shows camera surveillance footage from a static
isometric perspective. Actors include various road vehicles, pedestrians and cyclists.
Anomalies only present in the test dataset are considered vehicles parking in various
ways or pedestrians/cyclists crossing the road. Anomaly annotations are present for
the test dataset and are not localized. Videos are provided as individual frames and

Figure 4.4: Excerpt from the Street Scene dataset. Anomalies are marked in red.

not as a single continuous video �le. This in itself is not uncommon, but all frames
are compressed as JPEG images. Concatenating all individual frames into a video
reveals that the JPEG compression results in very jittery footage.

4.2 e:fs FKK Anomaly Dataset

In the context of this thesis, a completely new anomaly dataset called FKK Anomaly
Dataset is introduced. The training dataset consists of variable-length 1080p video
clips all taken by the FK 3 camera. Recorded footage features randomly selected scenes

3abbr. for �Forschungs-Kreuzung� (engl. Research-Intersection)
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Table 4.3: Length of the Street Scene train and test dataset.
Dataset Total Length
Train ∼98min (35 videos)
Test ∼38min (46 videos)

Figure 4.5: Excerpt from the FKK Anomaly dataset. Anomalies are marked in red.
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exhibiting mainly typical actor behavior. The clips present in the training dataset are
all unlabeled. There are two di�erent variations of the dataset, one featuring only
daylight scenes while the other also includes footage taken by night, dawn and sunset.
Naturally, the second dataset is the more challenging for the network to learn, because
it has to handle a wide variety of drastically di�erent ambient light conditions. For
real-world applications, the achieved test score on the day and night dataset is the
more decisive metric for overall e�ectiveness. In addition to the training dataset a
test dataset is provided, so models that were trained on the FKK Anomaly Dataset
can be evaluated thoroughly. Each variable length clip of the test dataset features
synthesized anomalous actors or behavior patterns. Because anomalies contained in
the video segments are synthesized manually, a slight bias is introduced into the test
dataset. To counteract this bias, a broad selection of di�erent anomaly categories
is included. Table 4.4 shows examples of di�erent anomaly types and their contexts
included in the test dataset. Binary and therefore not categorized frame annotations
are provided with each test video segment. All actors present in the test dataset

Table 4.4: FKK Anomaly Dataset - Anomaly Types
Anomaly Description Spatial Context Temporal Context

vehicle at unusual position !

vehicle stopping without reason ! !

pedestrian/cyclist crossing road illegally !

vehicle ignores the right of way ! !

are completely distinct from the training dataset. This is to ensure that the trained
model is exclusively confronted with previously unknown behavior or objects. Real4

anomalies captured by the e:fs FK camera are not present in the test dataset, because
they are hard to identify e�ciently. Even though the number of test videos in the
e:fs FKK dataset is not necessarily su�cient to evaluate the performance of a neural
network architecture very accurately, it is su�cient for evaluating whether or not an
approach is promising. It turned out that this was enough for this thesis and more test
video clips wouldn't have helped much in �nding a better architecture. In the future,
an anomaly detection system could be used to continuously �nd potential anomaly
candidates and build are more expressive test dataset.

Table 4.5: Length of the e:fs FKK train and test dataset.
Dataset Total Length
Train ∼121min (49 videos)
Test ∼7min (5 videos)

4�Real� in this context means not synthesized
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CHAPTER 5

Video Data Processing Pipeline

The systems proposed in this thesis are primarily designed to process video data. In
combination with the high data throughput required by machine-learning algorithms,
loading and processing video data becomes a non-trivial task. Using computer hard-
ware e�ciently becomes critically important, otherwise, system performance could be
bottlenecked by data loading and processing. Fortunately the torch.utils.data1

API provided by PyTorch can help tremendously with optimizing and implementing
e�cient data-loading pipelines. Features provided by the data API include:

◦ multithreaded data loading

◦ automatic batching of data

◦ integration with torchvision.transforms2 modules

An additional primary factor for choosing the torch data loading framework for this
thesis was that most of the code base was primarily written with PyTorch modules.
Therefore, no additional dependencies would be introduced into the project. This
also �ts in nicely with the overall goal to stay as native to the PyTorch ecosystem as
reasonably possible.

5.1 Data Loading

It's unfeasible to load all videos at once into system memory because this would
exceed the available memory capacity on almost all systems. Therefore, an itera-
tive data-loading solution is required. The implementation should also be as generic
as possible to support a wide variety of di�erent video datasets without any im-
plementation changes. The lowest API for reading video data from a drive is the
torchvision.io.read_video function. Internally this function either uses the Python

1https://pytorch.org/docs/stable/data.html
2https://pytorch.org/vision/stable/transforms.html
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library pyav or ffmpeg for video decoding. The latter o�ers better performance al-
though needing to be natively compiled for the target system. The trafficanomalydetection
library and executables will choose ffmpeg if available to the system and fall back to
pyav if not. There are di�erent approaches for loading video �les into data structures
that are appropriate for training a machine learning model. This thesis makes use of
the Dataset3 base class provided by PyTorch. Consequently, this enables the use of
the PyTorch DataLoader implementation, which provides multithreaded data-loading
and �exible batching. The following subsections describe di�erent implementations
that are used in this thesis.

5.1.1 Windowed Video Dataset

Most machine learning algorithms that operate on time series data, require input se-
quences to be provided as discrete time windows. Therefore, the video image sequence
needs to be separated into chunks of frames. Because the network can only observe a
single frame window at a time, it must contain as much temporal information as possi-
ble. Assuming that the video clip, from which frame windows should be extracted was
recorded at 25 frames per second. This results in a frame window of length 3 containing
∼ 0.12s of temporal information. Depending on the scene recorded, movement in these
∼ 0.12s are often minimal and therefore lack any signi�cant temporal information.

Figure 5.1: Visualization how frame strides
and window strides a�ect the data loading
process.

To counteract this e�ect frame strides
are introduced. The frame stride param-
eter de�nes how many frames are skipped
while selecting a window. A visualization
is shown in �gure 5.1. A frame stride of 1
results in no frame strides applied at all.
With a frame stride of 2 a single frame
between each selected frame is skipped,
therefore, doubling the time a single win-
dow covers. The frame stride parameter
can be considered a hyperparameter and
should be optimized to be optimal for a
speci�c dataset/architecture. Hyperpa-

rameter tuning techniques can be utilized to do so. Similarly, the window strides
parameter de�nes how many frames the window moves from one window to another.
Increasing this parameter can help with avoiding over�tting the model during training.

5.1.2 Graph Datasets

Contrary to the Windowed Dataset described in chapter 5.1.1 a torch_geometric4

LightningDataset is provided for model architectures that operate on graphs as
described in 6.5.1. Because graph construction is time intensive, online construction
techniques are not feasible for training neural networks e�ciently. The graph datasets
provided in this thesis construct graph-structures upfront and store them as pickle

3torch.utils.data.Dataset
4https://github.com/pyg-team/pytorch_geometric
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�les in the respective dataset directory. If construction parameters change, for ex-
ample, the feature extractor is replaced, all previously stored graphs get regenerated
automatically. Depending on which parameters change, di�erent preprocessing steps
need to be recomputed. This, for example, allows the user to change graph gener-
ation parameters/implementations without having to run the object detector again.
Dataset generation can vary greatly, depending on the number of frames present in the
dataset and which feature extractor (object detector) is used. Generating the graph
representation of the UCSD 1 dataset (see 4.1.1) with a Mask Faster RCNN-50 (Ren
et al., 2015a; He et al., 2017) feature extractor backbone network takes approximately
30 minutes on a single consumer-grade GPU 5.

5.2 Data Processing Modules

The loaded video footage needs to be further processed before it can be passed into
the input layer of a neural network. A modular architecture is used to provide as
much �exibility as possible. Each preprocessing operation for example rescaling is
implemented as a torch.nn.Module. This allows these modules to be used in con-
junction with the torchvision.transforms.Compose class. A demonstration of how
easy and maintainable a collection of preprocessing operations is shown below:

preprocessor = torchvision.transforms.Compose([

Rescale(256, 256),

Grayscale(),

TransformChannels("channels_first")

])

# input should be of shape [T, W, H, C] or [T, C, W, H]

preprocessed_footage = preprocessor(input_tensor)

The torchvision6 python package already implements some preprocessing modules7

this thesis leverages. To integrate a preprocessor into the data loading process seam-
lessly, it can be easily passed into the constructor of the VideoDataset class.

preprocessor = torchvision.transforms.Compose([

# ...

])

dataset = VideoDataset(..., transform=preprocessor)

# the preprocessor is applied internally

preprocessed_sample = next(iter(dataset))

The VideoDataset class will load video segments into memory, apply the given pre-
processing operation and store the resulting frames as uint8 tensors into a bu�er. As
soon as a new sample is requested (via next()) the VideoDataset only has to access
the internal bu�er and return a segment of it. This is multiple magnitudes faster as
reading a time window from disk every time next() is called.

5Nvidia RTX 3070
6https://pytorch.org/vision/stable/index.html
7https://pytorch.org/vision/stable/transforms.html
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5.3 Video Normalization

Input data normalization has proven to enhance numerical stability for various op-
timization techniques typically encountered with arti�cial neural networks. To nor-
malize individual frames, �rst, all frames are scaled into the interval [0, 1] by dividing
loaded frames by 255. Then the channel-wise mean and standard deviation are cal-
culated based on all frames in each training dataset. This ensures that the input
training dataset distribution is normalized to a standard distribution. Most behavior

Figure 5.2: Extracting the global mean pixel values from the UCSD 1 dataset will
result in the background approximation of the scene.

analysis models are primarily interested in actors that occupy the scene. Therefore,
background information about the scene can be discarded. For datasets that are cap-
tured from a static perspective, a naive posterior background subtraction algorithm
can be used. The average pixel value that shares the same spatial position as all
frames contained in the dataset is calculated. The foreground of a frame F (im) can
be isolated by subtracting the posterior global average frame bg with

F (im, bg) = im− bg

The combined normalization and background removal technique is implemented as a
parameterized torch.Module and conforms to torchvision transformation standards
and therefore can be used with the Compose8 class. Because calculating normaliza-
tion parameters (global average frame, average channel mean, average channel devi-
ation) requires a complete traversal of the training dataset, all parameters are only
calculated once and saved to a �le. The process is completely automated via the im-
plemented pytorch_ligthning.DataModule (chapter 5.5) and it's prepare_data()
method. Generated normalization parameters for each dataset are also automatically
loaded and passed to the implemented Normalizer class. For visualization purposes
the Normalizer class implements a .revert(normalized_input: torch.Tensor)

method so the generated frames can be restored into the original distribution and can
be visualized without any color distortions.

8https://pytorch.org/vision/stable/generated/torchvision.transforms.Compose.html
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5.4 Anomaly Annotations

Some video clips have anomaly annotations, primarily test and evaluation datasets.
The structure of these annotations can vary drastically from dataset to dataset. For
some datasets, annotations are provided as second intervals and for others frame inter-
vals or direct frame annotations. To enable the VideoDataset to load available labels
automatically, all provided labels are transformed into binary frame annotations. Each
frame Xt is assigned a binary label yt ∈ [0, 1] with 1 representing an anomalous frame.
After the transformation into our label representation, the label representation y is
saved to a numpy text �le alongside the video data. The VideoDataset class automat-
ically detects whether labels are present and loads them automatically. It will return
the labels alongside the image data as a python tuple.

dataset = VideoDataset(...)

(frames, labels) = next(iter(dataset))

Further detail on when and how these labels are generated is described in the following
chapter 5.5.

5.5 PyTorch Lightning Data Modules as an Abstrac-

tion Layer

Most datasets have multiple types of datasets like train, test, evaluation. PyTorch

Lightning provides an abstraction layer for datasets, data-retrieval and data loader
con�guration called LightningDataModule9. Each dataset gets its own LightningDataModule
implementation, in which the following functionality is implemented:

API Description
train_dataloader() Returns the DataLoader object used for training.
val_dataloader() Returns the DataLoader object used for validation.
test_dataloader() Returns the DataLoader object used for testing.
prepare_data() Download and transform labels if necessary.

The LightiningDataModule can be used in conjunction with the Trainer10 class
to easily implement the training, evaluation and testing process.

model = ...

trainer = pl.Trainer()

# will automatically download the dataset if necessary

data_module = UCSD()

# the correct loader will be used by the PyTorch Lightning trainer

trainer.fit(model=model, datamodule=data_module)

trainer.test(model=model, datamodule=data_module)

9https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html
10pytorch_lightning.Trainer
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CHAPTER 6

Irregularity Analysis Model Design

This chapter goes into detail and explains each neural network implementation this
thesis covers thoroughly. Additionally, architecture-speci�c experiments and potential
�ndings are described. Each architecture is then evaluated on each dataset from
chapter 8. Almost all neural network approaches introduced in this chapter fall into
one of two categories. One is a reconstruction-based autoencoder type, that will try
to reconstruct its input tensor from latent space.

rec : RT×C×H×W → RT×C×H×W

The second category is a future frame prediction (abbr. FFP) neural network. As the
name would suggest, the network tries to guess a future frame T + 1 of a given input
sequence of size T . Formally the mapping of an FFP (ffp) model looks like this.

ffp : RT×C×H×W → RC×H×W

The output doesn't have any temporal dimension anymore, because the model will
predict only one point in time. Even though both tasks seem very di�erent most un-
derlying architectures can be easily adapted toward either an FFP or a reconstruction-
based model.
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6.1 Self-Supervised Pixel-based Cuboidal Spatial Tem-

poral Autoencoder

Figure 6.1: Flow of data through an au-
toencoder.

Because most of the available data pro-
vided by e:fs1 is unlabeled, an unsuper-
vised training approach is highly favor-
able. The Autoencoder (Schmidhuber,
2015) neural network architecture pro-
vides a great way of training model pa-
rameters self-supervised (Baldi, 2012).
For more general information regard-
ing the Autoencoder architecture refer to
chapter 3.3.2. The neural network archi-
tecture used for the experiments in this
thesis was inspired by Learning Tempo-
ral Regularity in Video Sequences (Hasan
et al., 2016) which showed that you can
detect anomalies in video sequences by
using two-dimensional convolutional (Le-
cun et al., 1998) networks. The model is

trained by batches of three-dimensional tensors with �xed dimensions of [T,H,W ], T
being the desired length of an image sequence and H and W being frame width and
height. T can be chosen freely during model creation/training and a�ects the model's
training and runtime performance. Consequently, this architecture is only able to pro-
cess monochrome images. Autoencoders primarily consist of three separate elements,
visualized in �gure 6.1. The Encoder E : RT×H×W → RT×H×W is responsible for
compressing a given input x ∈ RT×H×W , into a signi�cantly lower feature-space. This
space is often referred to as the latent-space and serves as the bottleneck to the system.
The Decoder D : RT×H×W → RT×H×W is used to invert the encoding operation by
restoring a data-point in latent-space to feature-space. The mathematical formulation
can be seen below.

min D(E(x))− x

To apply this approach to the camera surveillance use-case of this thesis, the assump-
tion is taken, that the majority of the video footage used during training depicts
non-anomalous behavior. If the recorded scene would be an intersection in which
anomalous events happen regularly, it may not be feasible to use this type of tech-
nique. Instead, a supervised machine-learning approach would be more appropriate.

6.1.1 Architecture

The input to the network is a �xed-length series of monochromatic images each being
a part of a continuous video sequence. Combined they build a single three-dimensional
cuboid depicted in �gure 6.2. The Encoder sub-network of the autoencoder consists
of three convolutional layers with the �rst two followed by a two-dimensional max-
pooling (Nagi et al., 2011) layer each. The �rst two-dimensional convolution is applied
to the input cuboid with a kernel size of 14 and stride of 4. The layer will create
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512 �lters of the input data with each being of size ∼ 60 × 60. Max-pooling with
a kernel size of 5 is applied to reduce the amount of computational complexity in
the network and make the network generalize better. It is important to save the
indices provided by the max-pooling layer, to be able to revert the operation during
the decoding phase. The second convolutional layer is applied to the outputs of the
�rst max-pooling layer and reduces the �lter count to 256 with a kernel size of 5.

Figure 6.2: The constructed image se-
quence cuboid passed into the autoencoder
network. The tensor has three dimensions
of �xed length. One is the image sequence
length T and the others are the width W
and height H of all frames.

Again max-pooling is performed, this
time with a lower kernel size of 2. Now
the last convolutional layer transforms
the data into the three-dimensional la-
tent space of the autoencoder. It's of
particular importance, that the latent
space is multidimensional because other-
wise spatial information that the encoder
needs to reconstruct the original image
sequence would be lost. The decoder now
reverts all operations of the encoder in
reverse order, with matching layer pa-
rameters. The following layer imple-
mentation is used to revert the standard
two-dimensional convolution and max-
pooling implementation.

◦ PyTorch MaxUnpool2d (implemen-
tation)

◦ PyTorch ConvTranspose2d (imple-
mentation)

A visualization of the proposed architecture is shown in �gure 6.3. Each convolution
and pooling block is followed by a non-linearity function. Learning Temporal Regu-
larity in Video Sequences (Hasan et al., 2016) suggests either tanh or sigmoid as an
activation function for this type of neural network architecture. For this thesis, the
sigmoid activation is chosen based on empirical observations. The model is trained
with the Adam (Kingma and Ba, 2014) optimizer and a learning-rate of 0.01. For reg-
ularization, L2 norm is used over all model parameters with its intensity set to 1e−5.
The choice of learning parameters is based upon the author's choice and reasoning
stated in the original publication Learning Temporal Regularity in Video Sequences
(Hasan et al., 2016).

6.1.2 Training

Getting the model to converge turned out to be rather easy to achieve. Because all
training datasets have a �xed perspective of the scene, the model quickly learned
to reconstruct the scene's (mostly) static background. Areas that typically show
movement like streets or sidewalks are reconstructed with considerably less remaining
detail. The network is also not able to reconstruct actors in the scene with su�cient
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Figure 6.3: A visualization of the architecture used.

detail. Actor movement in general is not learned very well by the network architecture.
Instead, the network appears to have a signi�cant bias toward reconstructing areas
of the videos that don't exhibit any movement. This behavior is unfortunately the
opposite of what could be considered desirable. For detecting irregular behavior,
especially moving regions of the frame are of interest.

6.1.3 Experiments & Findings

One-Dimensional Latent Space

The �rst architecture prototypes incorporated a n-dimensional latent space feature
vector as an intended bottleneck to the system. This isn't atypical and many autoen-
coder architectures use a one-dimensional latent space. In combination with convolu-
tional neural network layers, a one-dimensional bottleneck will, unfortunately, remove
any spatial information from the encoder input entirely. Therefore, the Decoder isn't
able to reconstruct the input from the latent space anymore.

Pixel-Based Contrast Bias

An unfortunate side-e�ect of working with the video frames on a pixel layer is that
the optimizer is heavily biased towards higher contrast areas of the scene. Figure 6.4
shows an example of this behavior. This is a direct result of the criterion function the
optimizer uses to tune model parameters. The mean squared error loss function or in
other words the distance between two corresponding pixel values. Let P (x, y) be the
reconstructed pixel value at position (x, y) and I(x, y) be the encoder input. The loss
function is, therefore:

loss(x, y) = |P (x, y)− I(x, y)|22
Unfortunately, this loss function is ill-posed for the problem the network tries to solve.
The primary subject while performing anomaly detection is the behavior that dynamic
objects exhibit. Objects that are very close to the scene's background pixel exhibit a
very low response from the loss function in comparison to an object of a drastically
di�erent color. Desirable would be an equal response from both objects because
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both objects are semantically equally relevant. If the background can be extracted

Figure 6.4: This visualization shows the bias towards high contrast objects, exhibited
by the loss function (right).

from the frame the objective function can be improved by removing the background
values. Let P ′(x, y) = |P (x, y)−B(x, y)| be relevant information, with B(x, y) being
the backgrounds value at position (x, y). Consequently, I ′(x, y) = |I ′(x, y)−B(x, y)| is
the relevant information from the input frames to the network. The now background
bias corrected loss function is now:

loss′(x, y) = |P ′(x, y)− I ′(x, y)|

To isolate background and foreground from each other, an o�-the-shelve background
estimation algorithm can be used.

Importance of relative Object Size

The objective function needs to reduce each pixel distance to a single loss value.
Typically, one would use the mean or average over all pixel deltas. Objects that
cover fewer pixels of each frame have less in�uence on the overall loss compared to
objects that take up more space in the frame. To counteract this bias, a separate
segmentation network can be used, that generates binary masks for selected actor
types. These masks allow us to generate separate anomaly scores for each type of
actor. This option is not further explored in this thesis but is a potential future
improvement.

Perspective Bias

A similar e�ect to the one described in chapter 6.1.3 is that the footage taken by
the camera is perspectively distorted. This will result in a bias towards anomalies
that appear close to the camera. A relatively crude but e�ective way of mitigating
the perspective bias is, to apply a perspective correction to the video stream. The
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associated quality loss can be disregarded for most model architectures, because they
work with a much lower input resolution. To apply a perspective correction, one must
know scene-speci�c parameters to apply a homography to each frame.

6.2 Self-Supervised Pixel-based Cuboidal Spatial Tem-

poral Autoencoder (FastAno)

An architecture similar to the one described in the previous chapter 6.1, is an autoen-
coder architecture proposed by FastAno: Fast Anomaly Detection via Spatio-temporal
Patch Transformation (Park et al., 2021) that promises very good anomaly detection
performance while having a simple architecture and fast execution speeds. Compared
to the model described in chapter 6.1, the FastAno architecture leverages 3D con-
volutions to process spatial and temporal information. The architecture follows a
variation of the U-Net (Ronneberger, Fischer, and Brox, 2015) convolutional autoen-
coder architecture with the encoder consisting of three stacks each containing a 3d
convolutional and batch normalization layer. The decoder reverses the encoder ar-
chitecture by replacing each convolutional layer with the respective deconvolutional
layer. While decoding, the decoder will reduce the temporal dimension 0 . . . t to a sin-
gle point t+1, the prediction for the next frame. This ranks this model into the future
frame prediction category. During training, quadratic regions of the input cuboid get

Figure 6.5: Training the model to identify rotated features, leads to more semantically
relevant information in each frame embedding.

either rotated or temporally permuted. This should lead to better performance by the
network (Park et al., 2021) because the network is forced to embed more critically im-
portant information into the latent space (Zaheer et al., 2020). The intuition behind
this technique is that a system requires more semantical knowledge about objects if
they should be recognized even if they are rotated (Gidaris, Singh, and Komodakis,
2018). After a few experiments and a qualitative and quantitative evaluation, sig-
ni�cant improvements could be registered compared to the architecture described in
6.1. The architecture achieves remarkable performance, especially considering its low
complexity and fast convergence. A thorough evaluation of this architecture on all
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Figure 6.6: Comparison between a predicted frame with an anomaly present (bottom
row) and one without any (top row).

datasets used in this thesis can be found in chapter A.2.

6.3 Spatial Convolutional LSTM Autoencoder

The neural network architecture proposed in chapter 6.2 is easily able to learn the spa-
tial relations of the input dataset. But especially the network described in 6.1 struggles
to e�ciently learn the temporal relations between consecutive frames. Additionally,
it's limited to monochrome input images because of the utilized 2d-convolution. Re-
cent research has shown that using recurrent neural network architectures can improve
the temporal learning capabilities of neural network architectures, while at the same
time reducing their overall parameter count and computational complexity (Liu et
al., 2018; Samuel and Cuzzolin, 2021; Luo, Liu, and Gao, 2017). Popular recurrent
layer architectures like LSTM 1 or GRU 4 can learn temporal relations between dif-
ferent time steps. Because the internal state of the recurrent cell is a vector, spatial
information about the input image(s) is discarded. The convolutional LSTM cell ar-
chitecture proposed by Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting (Shi et al., 2015) replaces matrix multiplication oper-
ations of the LSTM cell with convolution operations. This allows the cell to store
spatial information in addition to temporal information in its internal state. These
properties can be used to construct an autoencoder similar to the one described in
6.1, except it uses multiple convolutional LSTM cells as the bottleneck of the network.
Figure 6.7 shows a broad overview of the proposed architecture. The operations of
the spatial feature extractor are applied to every frame of an image sequence indi-
vidually. Not only does this reduce the parameter count of the network signi�cantly,
but also lets the LSTM layer focus exclusively on learning the temporal relations be-
tween a continuous series of time steps. While spatial encoder and decoder focus on
solely constructing or deconstructing feature maps. This design follows the principle
of separated concerns. The network receives an input of T consecutive (potentially)

1abbr. for Long Short-Term Memory
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Figure 6.7: Each input frame gets transformed into a feature cuboid and passed into
the LSTM unit. The recurrent (LSTM ) unit acts as the bottleneck to the network.
Finally a deconvolutional module transforms the LSTM output back into input space.
The di�erence between the input and the network's output is used as an indicator of
regularity.

multi-channel frames. A spatial encoder SE compresses each frame individually into
a feature map with 512 channels of size 12× 12. Each feature map serves as an input
to the convolutional LSTM module TE. The LSTM module creates a many-to-many
reconstruction of size T . The last operation applied is a stacked deconvolution SD
that reconstructs input space from feature space. The formula below describes how
the components of the autoencoder interact with each other.

x̂ = SD(TE(SE(x)))

The deviation between the input frame sequence and the reconstructed output of the
network is used as an indicator of whether anomalous behavior occurred in the given
image sequence. To measure the distance between input and output images, the L1
norm can be used. The basis of this choice is research that suggests better training
performance by using L1 over L2 norm (Zhao et al., 2017). Early results suggest that
the reconstructed images appear to be very blurry and introduce signi�cant noise.
For detailed results refer to the evaluation chapter 8.4. A second architecture inspired
by Robust Unsupervised Video Anomaly Detection by Multi-Path Frame Prediction
(Wang et al., 2020) suggests leveraging lateral connections to allow the model to
reconstruct objects in more detail. Unknown behavior or objects to the network are
reconstructed in less detail and therefore cause a higher di�erence between input and
reconstruction. The architecture follows a convolutional encoder-decoder architecture
with lateral connections similar to U-Net (Ronneberger, Fischer, and Brox, 2015).
Convolutions are applied to each frame of a series of �xed length T in parallel. Four
stacked 2d-convolution layers make up the encoder of networks with 128, 64, 64 and 32
�lters respectively. The kernel size and stride are set to 3 and 2 for each layer in the
encoder. Each convolutional layer passes its output in addition to the next encoding
layer to a convolutional LSTM layer (Shi et al., 2015) which makes up the lateral
connections to the decoder. The output signatures of every lateral LSTM layer are
equal to their inputs and their kernel size is set to 3. The decoder is made up of
deconvolutional layers mimicking the encoder's architecture but reversed. All layers
are followed up with ReLU non-linearity functions. For training the model the Adam
optimizer is used. This choice is based on the publication Robust Unsupervised Video
Anomaly Detection by Multi-Path Frame Prediction and its overall popularity in the
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machine learning community. The optimizer is initialized with a learning rate of 1e−4

and a weight decay of 1ee−6. The results presented in the evaluation chapter 8.4 show
that the lateral connections help to improve the reconstruction quality and therefore
improve the inferred anomaly/regularity score.

Figure 6.8: Spatio-temporal autoencoder architecture with lateral LSTM connections.

6.4 Many-to-One Future Frame Prediction Transformer

Figure 6.9: Transformer model architecture visualization.

The LSTM convolutional architecture described in chapter 6.3 is unable to capture
spatial relations outside the highly limited context of the individual convolutional
kernels. Contrary, the transformer neural network architecture (Vaswani et al., 2017)
demonstrated highly capable of capturing the global context of an input sequence.
Transformer networks are similar to an encoder, in that the network tries to compress
the input space into a highly abstracted and compressed latent space. Especially
transformer-based language models like GPT-3 (Brown et al., 2020) are characterized
by their ability to capture global context e�ciently. The publication (Yuan et al.,
2021) applies the multi-head self-attention transformer architecture to the anomaly
detection problem class. Compared to other previously mentioned approaches the goal
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of this model is not to reconstruct an input sequence from latent space, but predict a
future frame T + 1 from a T frame long input sequence. This type of model is often
called a FFP (future frame prediction) model. Similar to previous architectures the
model performance is used as an indicator for anomalies.

6.4.1 Model Architecture

Figure 6.10: Architecture concept of the
U-Net model. Encoder marked as blue and
decoder as red.

The model architecture is highly inspired
by the U-Net (Ronneberger, Fischer, and
Brox, 2015) architecture, visualized in
�gure 6.10. The bottleneck section of
the network is replaced with a spatio-
temporal transformer, that is described
in more detail below. Because the in-
put to the model is a sequence of images
and therefore very informationally dense,
a layer of abstraction is required to re-
duce the overall computational complexity of the model. The U-Net feature extractor
and decoder are applied individually to every frame of a T long input sequence. The
resulting T feature map cuboid from the U-Net feature extractor, are each individu-
ally tokenized by separating all feature maps into n × n sized chunks. These chunks
are then projected via a fully connected layer onto a token vector. The process is vi-
sualized in region �Temporal Token Transform� of �gure 6.9. Feature map cuboids are
therefore transformed into a T ×S×d with S being the number of total chunks and d
being the internal token dimension. This transformation subsequently strips the tem-
poral identity information of all token sets. To let the network di�erentiate between
tokens of a speci�c time step, each time step is augmented with a single randomized
token that allows the transformer module to di�erentiate between tokens.

6.4.2 Training

To train the model a series of di�erent loss functions are utilized. The already speci�ed
pixel-distance loss is used to ensure the predicted pixels match as close as possible to
the ground truth frame.

Ldist(x, y) = |x− y|2
Additionally, the L2 distance between the image gradient of the predicted frame and
ground truth is added to the overall training criterion. This loss is referred to as
gradient-loss in the context of this thesis. The objective of this loss is to drive the
model to sharpen parts of the image that are also sharp in the ground truth frame.
If the generator encounter objects that are not known to the model, it'll fail to suc-
cessfully sharpen the edges of said object. (Yuan et al., 2021) To further improve
the prediction accuracy, a discriminator D as part of an adversarial training mod-
ule is introduced. The discriminator is trained to di�erentiate between generated
and real frames. The generator G tries to trick the discriminator into classifying a
generated/predicted frame as real.

Ldisc(x) = 1−D(G(x))
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Figure 6.11: A visualization of all loss functions used during generator training.

Simultaneously a separate optimizer trains the discriminator to correctly classify im-
ages as either generated or real. During model training, both optimizers will eventually
reach an equilibrium. The �nal training criterion is the weighted sum of all previously
introduced loss functions.

L(x, y) = λdistLdist(x, y) + λgradLgrad(x, y) + λdiscLdisc(x)

The di�erent weights (λ) chosen are further elaborated in the corresponding evaluation
chapter. For both optimizers, Adam is chosen based on other literature (Yuan et al.,
2021) and empirical evidence.

6.4.3 Experiments & Findings

Hyperparameter Tuning

To optimize hyper-parameters for the transformer model, a random search over the
hyper-parameter search space is performed. The hyper-parameter search space is
selected by manually selecting a plausible value range for every parameter. Table 6.1
shows the search con�guration for the hyper-parameter tuning operation. Each model
with a random parameter con�guration is trained for 30 epochs on a single Nvidia
A100 GPU. Because multiple GPUs are available to the system multiple models can
be trained in parallel. After all hyper-parameter tuning training jobs are �nished, the
most promising parameter con�guration is trained further to evaluate its e�ectiveness.
The model parameter con�gurations and evaluation metrics can be seen in table 6.3.
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Table 6.1: Hyperparameter Search Space
Attribute Name Search Space
Frame Strides [7, 8, . . . , 14]
Gradient Loss Weight 0.5 - 5 (uniform sampling)
Reconstruction Loss Weight 0.5 - 2 (uniform sampling)
Discriminator Loss Weight 2 - 12 (uniform sampling)
Di�erence Loss Weight 4 - 8 (uniform sampling)
Token Dimensionality [128, 256, 512, 1024]

Table 6.2: Hyper-parameter tuning results for the transformer
network architecture performed on the UCSD pedestrian 2
dataset. Only the top 20 training runs of a total of 50 runs
are displayed in the table below.

SSIM
AU-
ROC

PSNR
AU-
ROC

PMSE
AU-
ROC

F
Strides

Token
Dim

Recon.
Loss Weight

Grad. Loss
Weight

Di�. Loss
Weight

0.758 0.753 0.762 7.0 256.0 1.296 0.551 5.354
0.742 0.726 0.723 8.0 512.0 0.74 4.716 6.517
0.74 0.723 0.734 9.0 1024.0 0.94 3.081 6.485
0.74 0.732 0.73 8.0 1024.0 1.472 0.881 6.829
0.739 0.725 0.722 7.0 256.0 0.861 1.126 7.355
0.734 0.719 0.724 8.0 128.0 1.589 2.142 5.151
0.733 0.721 0.734 7.0 256.0 0.645 2.206 7.331
0.726 0.705 0.715 9.0 128.0 1.38 4.543 4.52
0.722 0.706 0.714 9.0 128.0 0.616 4.635 7.52
0.721 0.708 0.709 8.0 1024.0 1.624 3.145 6.414
0.711 0.703 0.702 8.0 128.0 0.968 1.371 7.351
0.68 0.658 0.671 10.0 1024.0 1.509 4.158 7.013
0.677 0.657 0.672 10.0 256.0 0.59 2.012 6.81
0.669 0.652 0.664 10.0 128.0 1.676 1.862 4.225
0.668 0.651 0.668 12.0 128.0 1.066 2.453 4.649
0.663 0.653 0.66 10.0 1024.0 0.825 0.67 7.237
0.663 0.648 0.663 11.0 1024.0 1.928 1.068 5.429
0.662 0.648 0.646 10.0 128.0 1.35 0.627 5.593
0.661 0.654 0.659 13.0 1024.0 1.4 1.617 6.549
0.658 0.649 0.655 13.0 256.0 1.467 3.62 6.943

Through table 6.2 a strong correlation between the AUROC score(s) and the
Frame Strides hyper-parameter can be observed. To further evaluate if the model
architecture can leverage the increased temporal information present in frame win-
dows with frame strides, an additional hyperparameter optimization run with disabled
frame strides is performed.
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Table 6.3: Hyper-parameter tuning results for the transformer
network architecture performed on the UCSD 2 dataset.

SSIM
AU-
ROC

PSNR
AU-
ROC

PMSE
AU-
ROC

F
Strides

Token
Dim

Recon.
Loss Weight

Grad. Loss
Weight

Di�. Loss
Weight

0.831 0.83 0.827 1.0 512.0 1.603 0.512 4.714
0.831 0.827 0.827 1.0 512.0 1.64 3.325 5.948
0.82 0.821 0.812 1.0 512.0 1.11 1.972 7.409
0.825 0.828 0.823 1.0 512.0 0.721 1.726 4.012
0.815 0.82 0.812 1.0 512.0 0.904 0.744 4.156
0.811 0.812 0.805 1.0 512.0 0.929 1.129 6.948
0.806 0.811 0.802 1.0 512.0 1.056 3.241 4.205
0.807 0.806 0.798 1.0 512.0 1.042 2.228 6.405
0.804 0.803 0.796 1.0 512.0 1.232 1.902 7.415
0.805 0.803 0.802 1.0 512.0 0.82 1.914 4.015

It is observable that a model trained on data with no frame strides performs
signi�cantly better than a model that is. For a more detailed analysis of how the Frame
Stride parameter a�ects the model performance, refer to the qualitative analysis in
chapter 6.4.3. All AUROC scores are calculated based on model performance on the
Test dataset. Each test clip of the UCSD Pedestrian dataset consists of 36 video clips,
each 8 seconds long. The WindowedVideoDataset (see chapter 5.1.1) implementation
is used to load test clips and apply the same prepossessing operations that are used
during training. As soon as all sliding windows of a testing video clip were propagated
through the network the resulting frame distance values are normalized to generate
the anomaly values for every frame. This method for evaluating the anomaly detection
performance of a model is typically used in other publications as well. Yet a good
score doesn't necessarily mean as good of real-world performance, because real-world
videos are often much longer than 8 seconds. This can signi�cantly a�ect real-world
model performance as soon as a model architecture is susceptible to regime shifts
(chapter 8.1.2) in the input data. In most datasets covered in this work, regime shifts
happen between scenes where there is much global movement and scenes where almost
no movement happens. It's very unlikely that a video clip of 8 seconds contains such
a drastic change in total movement. Because almost all test clips are separated by
signi�cant time gaps, combining all clips into a single, longer clip is not a viable option
either.
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Figure 6.12: Training progress of the model's main loss function. The main loss
function is de�ned as a weighted sum of all minor loss functions.
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Implications of the Frame Stride Hyper-Parameter on the Model

In the previous section 6.4.3 �Hyperparameter Tuning� a signi�cant correlation be-
tween model performance and the Frame-Stride hyper-parameter was discovered. Be-
sides viewing the model purely through a numerical perspective, a qualitative analysis
of the generation results allows us to learn more about the model's behavior. Figure
6.13 shows the di�erent generation results from two models which only di�er from
each other by their frame-stride parameter. The model with frame-stride set to 1 is
referred to as M1 and the other as M2. The vehicle highlighted by the red dashed
box is being reconstructed very closely by model M1. Compared to M1, M2 struggles
to accurately predict the vehicle and even substitutes it with a person (marked in
green in �gure 6.13). The results generated by M2 are for our use-case more desirable
because the vehicle was not present in the training dataset and should subsequently
be considered an anomaly. This behavior most likely originates from the model hav-

Figure 6.13: Two models trained with di�erent frame strides and their predictions
compared to each other.

ing an easier time reconstructing a time-step t + 1 which is closer in time to t and
has naturally less di�erence. Unfortunately, a higher time di�erence also increases the
overall reconstruction noise and therefore leads to a less distinctive anomaly signature
of a frame. The anomaly heat map in �gure 6.13, shows the average L2 distance of
all corresponding pixels in the predicted and ground truth frame.

6.5 High-Level Representation Learning with Graph

Neural Networks

Previous approaches can detect point anomalies with spatial context reliably. Con-
textual anomalies based on temporal and spatial context can be hard to identify by
the networks. As previously mentioned, it's harder for neural networks to identify
complex contextual anomalies based on a high-dimensional input space. Image pixels
are highly dimensional and being able to learn actor behavior requires a high level of
learned abstraction. If the primary objective of the anomaly detection system is to

46



detect behavioral anomalies e�ciently, a new approach is required. Anomalous actor
behavior most often involves some form of interaction with one or many other actors.
Graphs are a �tting data structure to model actors and actor relations in a scene.
Each node in a graph represents an actor of a scene and edges represent spatial or
temporal actor relations. If a system can learn normal actor relations in a graph,
this knowledge can be used to identify abnormal nodes or clusters. Pourreza, Salehi,
and Sabokrou (2021) proposes a system that uses an o�-the-shelve object detection
network, to extract a high-level representation of the input image(-sequence). A di-
rected weighted graph structure is populated with the detected objects. Thereupon
a global summary vector of the whole graph is constructed (Veli£kovi¢ et al., 2018)
and a discriminator is trained to distinguish between nodes that are valid for a given
global graph summary vector and irregular ones.

6.5.1 Graph Construction

Figure 6.14: Constructing a spatio-temporal graph from object bounding boxes de-
tected by an object detector.

Figure 6.15: The ROI pool-
ing procedure to extract fea-
ture vectors from feature
maps.

Like Pourreza, Salehi, and Sabokrou (2021) sug-
gests, a Faster R-CNN model (Ren et al., 2015b)
trained on the Microsoft COCO (Lin et al., 2014)
dataset is used as the object detector. The Detectron
2 (Wu et al., 2019) Faster R-CNN implementation to-
gether with the provided weights is used. Faster R-CNN
is used as the object detector architecture because it can
be potentially used in soft real-time applications be-
cause of its fast runtime. Other speed-optimized archi-
tectures like Yolo V5 are also already implemented but
are currently not utilized. Each arbitrary-sized image of
a series I0...t gets individually processed by the object
detector. Detectron 2 provides us with the bounding
boxes of all objects that are in the scene ONt with Nt

being the number of objects N in frame t. Addition-
ally, a PyTorch forward hook gets used to extract the
last activation Ft from the object detectors backbone
ResNet. Ft is a feature map encoding high-level seman-
tic information about objects in a given image. Feature
map Ft and object bounding boxes ONt are used in an
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ROI pooling (Ren et al., 2015b) procedure2 followed by
averaging pooling the extracted patch of the feature map. Region of interest (abbr.
ROI) pooling extracts the bounding box region of an image. This process is graphi-
cally depicted in �gure 6.15. The resulting object vectors xt,i ∈ RC are a summary of
all high level features extracted by the object detector for a given object i of Nt.

The �nal constructed graph should be a projection of spatial and temporal re-
lations between actors. Spatial relations of a time t are modeled as an undirected
Nt × Nt adjacency matrix Gs with each element Gsi,j representing the intersection
of bounding box Oi and Oj. For calculating the intersection between two bounding
boxes the IoU 3 is used. To model temporal connections, the similarity between two
feature vectors of the same objects xt,i and xt+1,i at di�erent times in space is ex-
ploited. Because the feature vectors originate from a high-level feature map, subtle
pixel changes triggered through movement should not a�ect an object's feature vector
much. As suggested by Pourreza, Salehi, and Sabokrou (2021) the cosine similarity
function is used to measure the distance between xt,i and xt+1,i. Therefore, the di-
rected temporal graph x is constructed by comparing each element at time t with all
the elements t+1. Finally, a combined spatio-temporal graph Gst can be constructed
by combining Gtemp and Gs in the following manner:

Gst =


Gspatial

t Gtemporal
t,t+1 0 . . . . . .

0 Gspatial
t+1 Gtemporal

t+1,t+2 0 . . .
. . . . . . . . . . . . . . .

. . . . . . 0 Gspatial
T Gtemporal

T−1,T

 ∈ RN×N

Gst is a quadratic directed N × N graph with N being the total amount of objects
present in each frame of a time sequence T . Consequently, N can be of arbitrary
size and the graph can be generated e�ciently by discarding early time steps and
appending new ones.

6.5.2 Architecture

Figure 6.16: Deep Graph Infomax Architecture.

For learning regularity the approach suggested by Veli£kovi¢ et al. (2018) is uti-
lized. First, the previously constructed spatio-temporal graph Gst is encoded using

2In this implementation feature map Ft gets scaled up by a factor 2×, so the case of an object
being smaller than a 1× 1 region after the projection is avoided.

3abbrev. for Intersection over Union
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a graph convolutional layer. Nodes in the graph that are connected to each-other
pass their information to themselves. After performing the graph convolution(s) a
summary vector S of the graph is constructed.

S =
1

N

N∑
i=0

xi

Then a discriminator D is trained to di�erentiate between regular and non-regular
nodes by evaluating a node xi in relation to S.

Figure 6.17: A�ect of the corruption
function C on a graph G.

For training the discriminator negative
samples are required, otherwise, the discrim-
inator isn't able to learn the di�erence be-
tween regular and irregular nodes. To gen-
erate negative samples the graph G gets cor-
rupted by a corruption function C. A random
row-wise permutation is applied to the graph
G as C. The transformation is visualized in
�gure 6.17. The corrupted graph G′ = C(G)
is then also propagated through the encoder
E. Positive and negative samples are then

passed to the discriminator D to distinguish between them. Figure 6.16 illustrates
the whole architecture.
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CHAPTER 7

Deployment and Production Usage

The resulting network of this thesis can be deployed in conjunction with a web visual-
ization platform, a high-performance data storage solution and a RTSP interface. All
services are containerized and can be deployed to a Kubernetes cluster. The di�erent
components utilized are further described in detail in this chapter.

7.1 RTSP Proxy

Figure 7.1: A demonstration of how the
proxy-server is being used, to relieve the
RTSP camera uplink.

The FKK camera stream is available as
an RTSP stream. Unfortunately, the
camera uplink is unable to support a
multitude of connections simultaneously.
Because the camera is used by multi-
ple research groups, a more robust and
better-performing solution is required.
The solution should be able to scale
to many concurrent streams e�ciently
without any stream interruptions. Fig-
ure 7.1 visualizes the new architecture. A
proxy server is used that can redistribute
the RTSP stream to an arbitrary amount
of clients. The open-source software rtsp-

simple-server 1 lets us redistribute, record and transcode the input stream. Ultimately
the server provides di�erent streams under the following paths:

1https://github.com/aler9/rtsp-simple-server
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/proxy An identical mirror of the source stream.
/compressed Transcoded and compressed mirror of the source stream.

Optimal if one wants to save bandwidth while still receiving a
Full-HD stream.

/scaled A highly scaled-down version of the source stream.
The Full-HD streams gets compressed to 360p.
This variant is best if one doesn't need the high resolution
other streams provide and prioritize overall stability.

Additionally, all stream variants are on-demand transcoded with x264 and served
as HLS streams. In contrast to RTSP2, HLS 3 streams can also be played in a web
browser. This is especially useful for visualizing the stream in a web interface.

7.2 Inference Service

To infer regularity/anomaly scores from a continuous stream of data a containerized
inference service is used. The inference service has access to the preprocessing classes
associated with each architecture. For inference, the native software platform PyTorch
is avoided. Instead the lightweight machine learning runtime library ONNXRuntime
(onnxruntime.ai) is used. ONNXRuntime enables the use of many di�erent hardware
accelerators4 on a multitude of platforms. The library is also very lightweight and
therefore is perfectly suited for containerization. For invoking the runtime, the ON-
NXRuntime Python bindings are used. The inference service connects to the database
(see 7.3) and logs inferred information to said database. Input data is provided by
the RTSP stream provided by the RTSP Proxy service explained in chapter 7.1. If
a second camera is added to the system, it is su�cient to start a second inference
service container.

7.3 Data Persistence

To analyze historic data, a way to persistently store video and the corresponding
model inference data is required. The data to store is by nature of historical form
and manipulating historic data is not regularly required. Typically only data points
at the current time step are written to a database. There are a variety of di�erent
database distributions that specialize in time-series data. Popular examples would
be TimescaleDB (www.timescale.com) and In�uxDB (www.in�uxdata.com). For this
thesis, the latter is chosen based on its ability to process extremely high-frequency
input data streams. Additionally, In�uxDB allows this project to scale up to support
multiple camera streams and inference services simultaneously.

Persisting the surveillance camera's video stream allows machine learning models
to be trained on continuously growing datasets. The RTSP Proxy (explained in
chapter 7.1) is used to automatically store the stream from the camera as a 1080p video

2abbr. for Real-Time Streaming Protocol
3abbr. for HTTP-Streaming
4CoreML, CUDA, DirectML, oneDNN, OpenVINO, TensorRT, NNAPI, ACL, ArmNN, MI-

GraphX, Rockchip NPU, SNPE, TVM, Vitis AI (source: onnxruntime.ai)
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�le to cloud storage. To improve the storage e�ciency the RTSP Proxy additionally
compresses the stream in real-time.

7.4 Grafana Dashboard

Figure 7.2: Inference visualization using Grafana.

To provide the user with an easy-to-use and understand interface, Grafana is
leveraged as a dashboard software. The data is provided by an InfluxDB (chapter
7.3) instance and the RTSP -proxy servers HLS interface (chapter 7.1). To play the
HLS stream the innius-video-panel plugin5 for Grafana is used.

A user can easily access the dashboard by navigating to a web address and entering
valid access credentials. By default, the dashboard shows a periodically refreshing
view of the last �ve minutes recorded. But the user is also able to specify the desired
time range manually. An especially useful feature for analyzing past events.

Figure 7.2 shows a screenshot of the Grafana web interface. Raw metrics like
PSNR6 or SSIM7 are visualized in the topmost panel, while the interpreted anomaly
score is visualized in the Anomaly Score panel. Additional meta information like
performance metrics is also displayed. A user is therefore easily able to check if the
model is ill performing or if any issues with the stream occurred.

It needs to be noted, that the displayed HLS stream is not completely in sync. This
is caused by a limitation with the HLS protocol. HLS aggregates individual frames
from the stream into batches and then transmits them to all stream subscribers.
For some applications, this restriction isn't signi�cant but for some, latency may be
important. Automatic emergency response dispatch comes to mind. Latency-focused
applications can leverage the low-latency LL-HLS protocol (Durak et al., 2020), that
can serve incomplete video segments to clients. Because this protocol requires a TLS
certi�cate the deployment is slightly more complicated.

5https://github.com/innius/grafana-video-panel
6Peak Signal to Noise Ratio
7Structural similarity score
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CHAPTER 8

Evaluation

Because of time constraints, a thorough evaluation of the graph neural network archi-
tecture mentioned in chapter 6.5 was not feasible. The graph neural network archi-
tecture varies signi�cantly from other prediction or reconstruction based approaches
and therefore requires additional e�ort to evaluate.

8.1 Regularity Score Derivation

All previously introduced models generate image data by either reconstructing an
input or predicting a future frame. This on its own doesn't help us identify anomalous
scenarios. A reliable method for deriving the anomaly score by for example comparing
ground truth data with the prediction is required. The easiest method would be to just
calculate the distance between ground truth and prediction. As the distance function,
either L1 norm, L2 or even the Structural Similarity (SSIM) (see chapter 8.1.1) score
can be used. To reduce the image distance values to a probability estimation of

Figure 8.1: A side-by-side visualization of all the distance functions between the
ground truth and the predicted frame by the Transformer architecture.
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whether a frame is regular or not the distance values get normalized for a window
of size T . The normalized probabilities of the image distance values in �gure 8.1
are depicted in �gure 8.2. Of course, the values produced by each distance function

Figure 8.2: Regularity probability calculated based on the previously calculated image
distance values.

get also normalized to a �xed interval. Because the system will usually work on
a theoretically inde�nite stream of numbers a windowed normalization approach is
applied.

8.1.1 Choice of Distance Function

As shown in �gure 8.1, di�erent distance functions can be leveraged for deriving a
regularity score. This inherently creates the problem, of which distance function to
choose. For di�erent use cases, there may be di�erent optimal distance functions.
This requires a separate evaluation of each distance function for each use case. The
evaluation will not only be a single AUROC score but one for each implemented
distance function. The models' �nal performance is the maximum value of all AUROC
scores. Implemented distance functions are:

◦ L1 distance between ground truth and prediction

◦ L2 distance between ground truth and prediction

◦ SSIM score (Wang et al., 2004)

SSIM(x, y) =
(2µxµy + c)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

x, y each is a window of H ×W
µx and µy are the pixel sampled mean of x and y
σ2
x and σ2

y are the variances of x and y
σxy is the covariance of both x and y x, y in
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◦ Peak Signal to Noise Ratio (PSNR)

PNSR(x, y) = 10 ∗ log10(
max(x)2

MSE(x, y)
)

x, y each is a window of H ×W

◦ Patched Peak Signal to Noise Ratio

◦ Patched SSIM score

◦ Patched L1 distance

8.1.2 Regime Shifts

Especially noticeable for the FKK use case is a regime shift between halting and �ow-
ing tra�c. A regime shift is a large and abrupt change in a function or ecosystem,
often encountered in the �nancial domain (Aloui, Hammoudeh, and Hamida, 2015).
In our case, the regime shift originates from the model making naturally more mis-
takes predicting moving objects compared to static ones, as seen in �gure 8.4. The
e�ects on the distance function(s) can be observed in �gure 8.3. To counteract this

Figure 8.3: Flowing and halting tra�c resulting in a regime shift.

behavior the model can be improved by either getting the model to predict moving
objects better or identify regime shifts and compensate for them during the regularity
score derivation. The �rst solution is quite challenging because the models' anomaly
detection capabilities su�er if the model is too good at predicting T + 1 or recon-
structing T . Therefore, a statistical approach for detecting regime shifts is required.
Such a system is out of scope for this thesis and therefore only mentioned further in
chapter 9.2.
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Figure 8.4: The shown example demonstrates that even if there is no anomaly present
in the scene, the distance values are signi�cantly higher if there are moving objects in
a scene. The visualized distance function is the patched MSE.

8.2 Spatial Temporal Cuboidal Autoencoder

For the evaluation of further anomaly detection architectures covered in this thesis,
the architecture discussed in chapter 6.1 inspired by Hasan et al. (2016) is used as
a baseline. Not only is this architecture chosen because of its simplicity, but also
because it's one of the most cited publications (with 803 combined citations in Google
Scholar) in the �eld. Compared to other publications in the video anomaly detection
�eld, the total citation amount is comparable high. This makes this architecture ideal
as a baseline for other architectures introduced in chapter 6 of this thesis.

8.2.1 Hyperparameter Tuning

Compared to other architectures, the spatio-temporal cuboidal autoencoder archi-
tecture has comparably few hyperparameters to tune. Nevertheless, hyperparameter
tuning is still performed to get as close to reaching the architecture's potential as pos-
sible. The process of how the hyperparameter search space is performed is described
in detail in chapter 2.8. Table 8.1 shows the chosen search space for hyperparam-
eter tuning. Possible values for hyperparameters are purely selected on subjective
plausibility. Inspiration is taken from other publications using similar neural network
architecture variations. The Activation Function hyper-parameter refers to every non-
linearity function present in the model except the output activation layer. The last
activation heavily a�ects which data ranges are output by the model and an incorrect
choice makes the model incompatible with potential postprocessing operations.

Table 8.1: Spatio-temporal cuboidal autoencoder hyperparameter search space.
Attribute Name Search Space
Optimizer Type [Adam, Adagrad, SGD]
Learning Rate Uniform sampling in range 1e−5 - 1e−2

Activation Function [ReLU , sigmoid, tanh, LeakyReLU ]

8.2.2 Evaluation on Baseline Datasets
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Figure 8.5: Receiver operating
characteristic curve achieved on
the UCSD 1 test dataset.

Unfortunately the results achieved in the origi-
nal publication Learning Temporal Regularity in
Video Sequences (Fukushima, 1980) could not be
reproduced. Evaluation metrics shown in �g-
ure A.1 and 8.5 show a clear inability to predict
anomalies reliably in both baseline datasets.

Moving objects are only reconstructed as very
blurry shadow-like �gures. This is insu�cient
for deriving an expressive anomaly/regularity
score from di�erences between reconstruction and
ground truth. Examples can be observed in �gure
8.6 and 8.7. A de�nitive reason why the results
di�er so drastically between the implementation
of the publication and the one from this thesis
is unknown. Especially because the proposed ar-
chitecture is comparably simple to other archi-
tectures that were also evaluated in the context
of this thesis. After unsuccessfully reproducing the evaluation results on the Base-
line datasets, the decision to not further evaluate this architecture on domain-speci�c
datasets was taken. Another factor that solidi�ed this decision was the fact that other
approaches like the convolutional autoencoder augmented with RNN components like
the one described in chapter 6.3 claimed to have more potential than an architecture
that solely relies on convolutional layers.

Figure 8.6: Convolutional autoencoder ground truth and reconstruction comparison
on the UCSD 1 dataset.
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Figure 8.7: Comparison between the model's prediction and corresponding ground
truth frame. The �rst row shows a scene with no anomalous objects or events. The
bottom row contains visible anomalous objects.
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8.3 FastAno

Figure 8.8: Evaluation results of
the FastAno architecture on the
UCSD Pedestrian 1 dataset.

Compared to the related Spatio-Temporal au-
toencoder architecture described in chapter 6.1,
the FastAno architecture (6.2) proposed by
FastAno: Fast Anomaly Detection via Spatio-
temporal Patch Transformation (Park et al.,
2021) improves upon it by a signi�cant margin.
Especially considering its architectural simplicity
and very fast learning speeds compared to more
complex architecture like the transformer network
described in chapter 6.4. The reimplementation
of the FastAno neural network architecture of this
thesis matches the anomaly detection accuracy
achieved by the original publication closely1.

Qualitative analysis reveals that the model
can achieve such good results because anoma-
lous objects and behavior get predicted with sig-
ni�cant visual artifacts. These artifacts result
in a high response by the image distance func-
tion and therefore impact the anomaly/regularity score signi�cantly. For an ex-
ample refer to �gure 6.6. Especially interesting is the value range the di�erence-
heat-map covers. Other approaches typically don't generate any pixels that dif-
fer more than ∼ 10 pixel values from the ground truth. This approach on the
contrary generates pixels that have anomalous pixel di�erences with a distance
of ∼ 40. Compared to other approaches, this makes this architecture especially
con�dent in its regularity derivation and therefore the �nal regularity-score graph
considerably less volatile. Examples can be found in the appendix chapter A.2.

Figure 8.9: Evaluation of the
FastAno architecture on the e:fs
FKK dataset.

Experiments on the Street Scenes dataset were
unfortunately not as successful. The predicted
frame is covered with severe artifacts regardless of
whether there is an artifact depicted or not. Al-
though it is hard to �nd a tangible reason why
the prediction performance is drastically worse than
comparable datasets like Avenue or UCSD Pedes-
trian 1 & 2, a plausible reason would be the heavy
JPEG compression artifacts present in the Street
Scene dataset. These artifacts make individual pix-
els very jittery and therefore hard for the network to
predict. Figure 8.10 shows the intense prediction ar-
tifacts generated. Applying the architecture on the
e:fs FKK datasets doesn't yield the same artifacts
as described earlier. This furthermore consolidates
the conjecture, that JPEG artifacts are responsible
for the network's misbehavior. Although the net-

1Accuracy tested on the UCSD Pedestrian 1 & 2 and Avenue dataset
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work behaves properly (as visible 8.9), anomaly/regularity score inference doesn't
work as well as with the UCSD Pedestrian 1 & 2 and Avenue datasets. Especially
moving actors are all equally mispredicted by the network and therefore no meaningful
regularity assertion can be made (see A.2.3). Typically the results in the regularity
score correlate with the overall movement in the frame - a usual issue with recon-
struction/prediction approaches. The anomaly graphs for each test clip can be seen
in �gure A.6.

Figure 8.10: Applying the FastAno architecture on the Street Scene dataset, results
in heavy prediction artifacts regardless of whether there is an anomaly present or not.
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8.4 Convolutional LSTM Autoencoder

8.4.1 Evaluation on Baseline Datasets

First, a validation versus established state-of-the-art datasets is performed. This
con�rms whether or not the architecture implementation of this thesis is correct or
not. The primary goal is to reproduce the results of the original publications as
closely as possible. Therefore, the dataset selection from the publication is matched,
so a direct evaluation-accuracy comparison becomes possible.

UCSD Pedestrian 1 & 2

Figure 8.11: Comparison between the model's reconstruction and corresponding
ground truth frame.

Figure 8.12: Convolutional LSTM
Autoencoder Evaluation Results
on the UCSD 1 dataset.

Compared to the architecture entirely based
on two-dimensional convolutional layers, de-
scribed in chapter 6.1 the proposed LSTM ar-
chitecture can learn temporal relations between
objects more e�ciently. This becomes clearly
visible by comparing �gure 8.11 and 8.6. Ac-
tors and their movements are signi�cantly more
accurately reconstructed. The improvement can
be seen in �gure 8.12 which shows an over-
all improved anomaly detection performance on
the UCSD dataset. For all individual anomaly
score graphs please refer to the appendix section
A.3.1. The reconstructed frames are very blurry
and therefore the inferred regularity scores very
volatile. This makes the model overall not us-
able for reliable anomaly detection. The improved
convolutional autoencoder architecture enhanced
with lateral convolutional LSTM connections de-
scribed in chapter 6.3 improves reconstruction
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sharpness signi�cantly. Figure 8.13 shows the input and corresponding reconstruc-
tion of the proposed architecture. Compared to the same visualization of the previous
architecture in �gure 8.11, a signi�cant increase in sharpness is noticeable. The recon-
struction quality of anomalous objects or behavior is also noticeable but the di�erences
are still present as shown in the L1 distance visualization. The more de�ned di�er-
ences between input and reconstruction express themselves in a less volatile and more
con�dent regularity score.

Figure 8.13: Comparison between the lateral convolutional LSTM model's reconstruc-
tion and corresponding ground truth frame on the UCSD Pedestrian 1 dataset.

Avenue Dataset

Figure 8.16: Performance convo-
lutional LSTM autoencoder with
lateral connection measured by
the precision-recall curve.

Contrary to the isometric surveillance camera
perspective of the UCSD dataset, the Avenue
datasets allows an evaluation on a di�erent per-
spective. Because the ratio of regular and ir-
regular frames present in the footage precision-
recall curve is used as a metric. More speci�-
cally the area under the precision-recall curve (in
short AUPRC ) is better suited for heavily biased
data compared to the AUROC. Detailed regular-
ity scores for each video clip present in the test
dataset can be found in appendix A.12.
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Figure 8.14: Comparison between the lateral convolutional LSTM model's reconstruc-
tion and corresponding ground truth frame on the UCSD Pedestrian 2 dataset.

Figure 8.15: Qualitative evaluation of reconstructed frames by the autoencoder with
lateral LSTM connections. The upper comparison contains no anomaly and the lower
does.
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8.4.2 Application to the Road Tra�c Domain

Street Scene

Figure 8.17: Comparison visualization of the convolutional LSTM model's reconstruc-
tion and ground truth on the Street Scene dataset.

Figure 8.18: Reciever operating
characteristic curve achieved on
the Street Scene dataset by the
lateral LSTM convolutional au-
toencoder architecture.

Contrary to the evaluation results of chapter
8.3, a qualitative analysis suggests that the convolu-
tional LSTM architecture (chapter 6.3) isn't a�ected
much by the JPEG compression artifacts present in
the Street Scene dataset. Even though the recon-
structed frames are reconstructed without any faulty
artifacts, anomalies can't be identi�ed by their re-
construction and corresponding ground truth. Nat-
urally, this signi�cantly a�ects the model's anomaly
detection capability negatively. Of course, a purely
qualitative analysis isn't su�cient to assess whether
the input data quality a�ects the anomaly detection
capabilities. Only because there are no apparent ar-
tifacts present in the reconstruction as with the Fas-
tAno architecture the model can still be held back by
the underlying data. Because all machine learning
models covered in this thesis are inherently black-
box models giving explanations on certain e�ects
or model behavior is highly non-trivial. Contrary
to other architectures that use U-Net-inspired feature extractors, the convolutional
LSTM architecture produced remarkable sharp reconstructions visible in �gure 8.17.
Other architectures like the Transformer architecture described in chapter 6.4 typi-
cally struggle with reconstructing/predicting (fast) moving actors accurately.
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FKK Dataset

Figure 8.19: Comparison visualization of the convolutional LSTM model's reconstruc-
tion and ground truth on the FKK dataset.

The lateral LSTM architecture can accurately predict the future frame of a given
input sequence. Figure 8.19 clearly demonstrates how the model can draw moving
and static objects with signi�cant detail. Unfortunately, it also appears that the
architecture is unable to capture a deep contextual understanding of the underlying
scene. This manifests itself in anomalous behavior being reconstructed just as regular
behavior.
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8.5 Transformer Architecture

Figure 8.20: Evaluation results
on the UCSD 2 dataset.

The �rst experiments performed on baseline
datasets suggest very promising anomaly detection
performance. Figure 8.20 shows the achieved AU-
ROC scores on the UCSD 2 dataset. It's visible
which image distance functions (described in chap-
ter 8.1) work the best for the model and dataset.
SSIM shows signi�cantly worse performance than
other used distance functions. Figure 8.20 shows
how false positive classi�cations are a clear weakness
of the model compared to false negatives. For the
evaluation results on the more challenging UCSD
1 dataset refer to appendix chapter A.5.1. UCSD 1
provides more of a challenge for pixel-based anomaly
detection systems, because of the perspective dis-
tortion of objects. Because objects are at di�erent
scales, anomalies in the background have a signi�-
cantly lower impact on the overall anomaly score.

8.5.1 Qualitative Evaluation

Because the artifacts generated by all reconstruction-based models can be visualized
natively, a qualitative analysis of the generated frames is easily possible. Such an
analysis also reveals signi�cantly more information about the model's behavior than
a purely quantitative evaluation. The reconstruction comparison in �gure 8.21 shows

Figure 8.21: Comparison between the model's prediction and corresponding ground
truth frame. The �rst row shows a scene with no anomalous objects or events. The
bottom row contains visible anomalous objects (car and cyclist). The model was
trained without any frame strides.

that the network's prediction and the corresponding ground truth is almost identical

66



independent of whether an anomaly is present or not. Still, the model can detect
anomalous content in the frame(s). It can do so by subtle di�erences in the predicted
frames in contrast to the ground truth. Edges of anomalous objects are not rendered as
sharp as others. At closer inspection, even the geometry of some anomalous objects is
not reconstructed/predicted correctly. For example, the bicyclist's rear wheel features
noticeable reconstruction artifacts. Some generation artifacts are also clearly visible
in the car's shadow.
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8.5.2 Avenue Dataset

Figure 8.22: Reconstruction and ground truth comparison. The scene depicted in the
bottom row shows an anomaly in the form of a person running.

Figure 8.23: Evaluation of the
transformer architecture on the
Avenue test dataset.

As with the UCSD Pedestrian dataset, the ar-
chitecture can detect irregularities in the video
footage reliably. Of course, this approach also
su�ers from the drawbacks of other anomaly de-
tection techniques that use pixel distance as an in-
dicator of whether an object is anomalous or not.
Primarily, small objects that behave/are anoma-
lous unfortunately don't have as much impact as
objects that are bigger or closer to the camera.
Because footage of the Avenue dataset is taken
out of a very low perspective, this e�ect is en-
hanced greatly.

8.5.3 Application to the Road Traf-
�c Domain

To evaluate how good the architecture can be ap-
plied to the target domain of this thesis, train-
ing and evaluation are performed on two di�erent
vehicular anomaly detection datasets. First, the
model adaptability is tested on the Street Scene dataset (chapter 4.1.3) then an eval-
uation on the target FKK Dataset (chapter 4.2) is performed.
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Street Scene

The �rst attempts at training a model on the Street Scene dataset resulted in very
blurry moving actors. Consequently, the regularity score correlated with the global
movement in the scene. The e�ect is very similar to the one shown in �gure 8.11
encountered during the LSTM evaluation (chapter 8.4). Increasing various model
parameters for example the internal token dimension size, unfortunately, didn't yield
any improvements or changes in behavior. Instead of investing too much time and
e�ort into the Street Scene dataset, the decision was made to continue to the e:fs
FKK dataset. The reasoning behind this decision were the following arguments:

◦ Because of the heavy and suboptimal compression on the Street Scene datasets,
results may be not representative of the overall architecture performance.

◦ The architecture was not evaluated on the Street Scene dataset by the publica-
tion's authors and therefore no baseline evaluation results are available.

FKK Dataset

Similarly to the previous experiments on the Street Scene dataset (chapter 8.5.3) �rst
training runs resulted in models that predict moving actors only as very blurry objects.
Because the transformer architecture especially has much more hyper-parameters that
can be tuned compared to other architectures covered in this thesis, hyper-parameter
tuning is performed. The tuning process is especially time intensive for the Trans-
former architecture because of the complex search space and the implications of the
di�erent parameters on the model. To make matters worse, the model converges
much slower than other architectures resulting in each training run taking around
seven hours (two epochs) on a single A100 Nvidia GPU. Table 8.2 shows the hyper-
parameter tuning runs sorted by evaluation score. The performance of di�erent model
architectures is highly dependent on their parameter con�guration as seen by the large
spectrum of AUROC evaluation scores.

Table 8.2: Hyper-parameter tuning results for the transformer
network architecture performed on the FKK dataset.

SSIM
AU-
ROC

PSNR
AU-
ROC

PMSE
AU-
ROC

Token
Dim

Recon.
Loss
Weight

Grad. Loss
Weight

Di�. Loss
Weight

0.715 0.71 0.312 1024.0 4.68 8.422 1.04
0.699 0.696 0.327 2048.0 4.913 12.561 0.402
0.695 0.698 0.322 1024.0 1.724 5.127 0.421
0.683 0.689 0.331 1024.0 1.646 7.034 0.041
0.679 0.685 0.333 256.0 3.61 7.799 0.466
0.678 0.687 0.335 2048.0 3.525 5.245 0.475
0.668 0.676 0.363 2048.0 0.884 9.514 0.845
0.666 0.671 0.349 256.0 0.803 13.674 0.097
0.656 0.673 0.339 1024.0 1.437 7.341 0.526
0.649 0.668 0.367 256.0 0.887 11.797 0.105
0.647 0.669 0.346 256.0 0.623 7.395 0.781

Continued on next page
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SSIM
AU-
ROC

PSNR
AU-
ROC

PMSE
AU-
ROC

Token
Dim

Recon.
Loss
Weight

Grad. Loss
Weight

Di�. Loss
Weight

0.644 0.665 0.363 1024.0 4.123 10.049 0.555
0.643 0.662 0.34 256.0 2.612 14.043 0.118
0.636 0.664 0.363 1024.0 1.804 13.099 0.731
0.633 0.657 0.368 2048.0 4.654 5.975 1.462
0.631 0.652 0.37 1024.0 3.385 5.013 0.975
0.63 0.663 0.374 1024.0 2.323 9.761 1.482
0.62 0.651 0.374 256.0 2.243 13.965 0.071
0.502 0.502 0.502 256.0 1.88 13.236 0.576

Figure 8.24: Reciever operat-
ing characteristic curve over e:fs
FKK dataset.

After all hyper-parameter tuning runs have �n-
ished, a qualitative analysis of the most promis-
ing model is performed. A comparison between the
ground-truth frame and prediction can be seen in
�gure 8.25. Similar to other approaches presented
in this thesis, any movement captured in the video
results in considerable unsharpness. This conse-
quently diminishes the ability of the model to pre-
dict anomalies reliably. To rule out any prepro-
cessing operations having negative e�ects on the
model performance, a single model is trained with-
out any preprocessing applied to the input data.
The model's hyperparameter con�guration is the
same as the most promising con�guration found
during hyperparameter tuning. As expected re-
moving the preprocessing operations only reduced
the model's evaluation score by ∼ 0.03 AUROC.

Figure 8.25: Comparison between ground truth and prediction with an anomaly
present (bottom row) and without (top row).
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8.6 Evaluation Summary

In this chapter, a direct comparison between the model performance of every imple-
mented architecture is done.

Table 8.3: Evaluation scores achieved by each model archi-
tecture over all datasets.

Dataset Spatio-
Temporal
Cuboidal AE

FastAno Lateral Conv-
LSTM AE

Transformer

UCSD 1 0.72 AUROC 0.77 AUROC 0.72 AUROC 0.88 AUROC

UCSD 2 0.62 AUROC 0.79 AUROC 0.68 AUROC 0.86 AUROC

Avenue 0.80 AUPRC 0.95 AUPRC 0.74 AUPRC 0.95 AUPRC

Street Scene N/A 0.48 AUROC 0.66 AUROC 0.47 AUROC

FKK N/A 0.68 AUROC 0.63 AUROC 0.71 AUROC

Table 8.4: The distance function used to derive the anomaly
score for each dataset and model architecture.

Dataset Spatio-
Temporal
Cuboidal AE

FastAno Conv-LSTM
AE

Transformer

UCSD 1 MSE MSE Patched MSE
(top 4)

PSNR /
Patched MSE

UCSD 2 MSE MSE MSE PSNR

Avenue MSE MSE / PSNR Patched MSE
(top 4)

SSIM

Street Scene N/A N/A MSE PSNR

FKK N/A SSIM SSIM SSIM

Table 8.5: Comparison between architectures implemented
in this thesis and other state-of-the-art approaches. Values
taken directly by the corresponding publication.

Dataset Spatio-
Temporal
AE (Hasan
et al., 2016)

FastAno (Park
et al., 2021)

Conv-LSTM
AE (Luo,
Liu, and Gao,
2017)

TransAnomaly
(Yuan et al.,
2021)

UCSD 1 0.81 AUROC N/A 0.681 AUROC 0.840 AUROC

UCSD 2 0.90 AUROC 96.3 AUROC 0.811 AUROC 0.964 AUROC

Avenue 0.702 AUROC 85.3 AUROC 0.745 AUROC 0.870 AUROC

Street Scene N/A N/A N/A N/A

In summary, none of the reconstruction-based approaches resulted in a neural
network model that can detect anomalies on the e:fs FKK dataset reliably. The
anomaly detection performance on baseline datasets like UCSD or Avenue is close to
other state-of-the-art publications. It stands to reason, that the proposed architec-
tures are not able to learn a deep semantic understanding of a scene and its actors.
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Most approaches appear to only work on a relatively crude pixel level and are unable
to capture actor interactions e�ciently. The two most promising image-based archi-
tectures are FastAno for its great performance (both in terms of speed and accuracy)
on baseline datasets and the Transformer architecture because of its potential to learn
deep temporal and spatial relations. Further research on applying approaches that
work on a higher abstraction level, like the graph neural network architecture seems
promising for use cases that require a high level of semantical understanding of actor
interactions.

8.7 Runtime Performance

Anomaly detection is often used as a technique to identify interesting excerpts from
a large amount of data. Consequently, a fast inference time is very important for
most use cases. For video anomaly detection especially, possible real-time detection
on low-powered hardware can be very important. If a model/architecture is real-time
capable, a continuous stream can be assessed by the system without any intermediate
storage required. For testing the performance of di�erent architectures, each trained2

model gets executed with the ONNX-Runtime framework for 60 seconds. The average
inference time for a single frame is used as an indicator of execution speed. Of course,
execution times are highly relative to the hardware the model gets executed on. That's
why two di�erent GPUs are tested separately. One is a high-end Nvidia A100 card
especially targeted toward deep learning and the second is a consumer-grade CUDA-
capable graphics card. The latter could be realistically used for an edge computing3

setup. Lastly, an additional benchmark on a consumer-grade CPU4 is performed which
shows how each architecture performs on unspecialized hardware. Because of layer
incompatibilities between ONNX-Runtime and the PyTorch MaxUnpool2D layer a
representative comparison was not possible. Because of the architectural similarity
between the Spatio-Temporal autoencoder and FastAno architecture the performance
should be comparable.

Table 8.6: Comparison between architectures implemented
in this thesis and other state-of-the-art approaches. Data
loading and preprocessing operations are not measured for
all architectures.

Model CPU Nvidia
A100

Spatio-Temporal N/A N/A

FastAno 180 Hz 204 Hz

Conv-LSTM 100 Hz 1600 Hz

Transformer 1 Hz 153 Hz

2Theoretically, whether a model is trained shouldn't make any di�erence for performance analysis.
3Edge computing in contrast to cloud computing, roughly describes the execution of computation-

ally intensive tasks on the local device instead of sending the input data to the cloud and leveraging
the computation power of remote servers.

4Intel Core i7 6 Cores @ 2,2 GHz
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Table 8.6 shows that the FastAno and ConvLSTM networks are easily executable
on a medium-powered CPU. Especially noticeable is the Transformer architecture as
a signi�cant outlier that requires a GPU to be executed productively.
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CHAPTER 9

Conclusion

9.1 Anomaly Detection System

Unfortunately, the results of this thesis suggest, that current pixel-based anomaly
detection neural network architectures are not particularly suited for analyzing com-
plex behavior. Other approaches (like chapter 6.5) that work on an abstraction layer
should more easily learn behavior patterns. Abstraction also introduces additional
complexity to the neural network design process and more research has to be con-
ducted in this �eld. For example, the choice of which type of abstraction one would
use for a certain use case and how this abstraction is generated is highly non-trivial.
Nevertheless are pixel-based anomaly detection systems very well suited for use cases
that don't require much high-level understanding and are focused on very distinct
anomalies and fast inference times.

9.2 Future Work

9.2.1 Open Source Release

As already mentioned in chapter 9.3, e:fs as the intellectual property owner plans to
allow the project and the associated anomaly detection framework to be published
as open source software. To con�ne with company policies some parts of the project
still require additions like copyright headers and approval by the legal department.
With an open-source release also comes further development and maintenance of the
framework.

Optimizing Already Present Neural Network Architectures

Currently implemented neural network architectures still leave much room for imple-
mentation �ne-tuning. Because of the time constraints of this thesis and the com-
parably small performance gains that are theoretically possible, �ne-tuning the im-
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plementations was not feasible in the context of this thesis. Publications like Yolo
(Redmon et al., 2015) show that small implementations should not be neglected while
searching for small performance gains.

Supporting new State-of-the-Art Architectures

The anomaly detection research �eld is still very active and there are plenty of new
publications that claim to improve upon the approaches already implemented in con-
junction with the thesis. Some are only slight deviations from currently implemented
approaches like Lee, Nam, and Lee (2022) improving upon the transformer architec-
ture described in 6.4 utilizing optical �ow-based components. The required e�ort to
implement such a model architecture is fairly low because of already existing elements
present in the framework.

9.2.2 Combining Anomaly Detection with Actor Trajectory
Extraction

To create the end-to-end system described in chapter 1.1, e:fs will organize a student
project that'll try to fuse a real-time anomaly detection system and the actor trajec-
tory algorithm (Strosahl et al., 2022). The planned start date for the student project
is the 1st of October 2022 and will last six months.

9.3 Open Source Anomaly Framework

Unfortunately, there are not many publicly available machine-learning frameworks
that allow users to use state-of-the-art anomaly detection neural network architectures
in an accessible way. Creating such a framework would be a valuable contribution to
the machine learning research space and �ll a clear white-spot in the industry. That's
why this thesis not only produced multiple methods of detecting anomalies in the
tra�c domain but also provides a framework for anomaly detection that applies to
other domains as well. Through its modular design, one can easily adapt or extend
implemented model architectures to �t a speci�c use case. For uses, where no major
architecture design changes are required and access to the hyper-parameter is enough,
a simple model/training con�guration �le is su�cient.

{

"input_size": [256, 256],

"model_type": "transformer",

"dataset": "ucsd",

"skip_frames": 1,

"lr": 0.01,

"decay": 0.0005,

"optimizer": "adagrad",

"motion_threshold": 20,

"batch_size": 4,

"timesteps": 5,
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"model_parameters": {

"latent_dim": 2048,

"token_dim": 256,

"gradient_loss_weight": 2,

"reconstruction_loss_weight": 0.65,

"discriminator_loss_weight": 9,

"difference_loss_weight": 7.2,

"temporal_transformer_layers": 1,

"spatial_transformer_layers": 3

}

}

With the con�guration �le created, one can simply invoke

train --config ./custom-config.json

to start a training run. To register single or multiple custom datasets to train a model
on a pytorch_lightning dataset class has to be implemented. A thorough publicly
hosted web documentation (see 2.6) is additionally provided. The documentation
contains information on how to train a custom model and generated documentation
on Python classes used by the framework. The whole code base of this thesis will
be publicly available after the publication of this thesis as soon as the project passes
all open source requirements established by e:fs TechHub GmbH. The license under
which the framework will be published will be Apache-2.01. This allows users to use
the framework even for commercial purposes.

All the code necessary to reproduce the presented results in this thesis is published
as a public repository hosted on github.com. The project is both hosted under the
author's name-space (SirBubbls/tra�c-anomaly-detection) and simultaneously as a
fork under the e:fs TechHub's open source name-space (github.com/EFS-OpenSource)
and SAVeNoW (github.com/savenow). Third-party resources are not hosted in the
repository but need to be installed manually or semi-manually. All freely available
datasets used in this thesis can be easily downloaded with a provided Makefile. Some
datasets require permission to download and therefore can't be downloaded without
any authentication.

9.3.1 Ease of Use

During this thesis, the project was migrated and set up on di�erent machines multiple
times. Because of the utilized technologies for managing the project and dependencies
as described in chapter 2.1, deployment was very easy. No manual installation of
dependencies was necessary besides the correct Nvidia CUDA drivers if there are any
GPUs available to the system.

9.4 Personal Retrospective

At last, I want to give my personal opinions on things that went well and things
I would do di�erently in retrospect. The project's setup and the utilized tooling

1https://www.apache.org/licenses/LICENSE-2.0
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proved to be very solid and reliable. Poetry (chapter 2.1) proved to be very useful in
providing reliable behavior across di�erent systems. This is accomplished by having
hard compatibility constraints on dependency and sub-dependency module versions.
Anaconda orminiconda still have their right of existence, because they manage CUDA
environments way better than Poetry does. This means, that if developers don't all
have access to CUDA capable GPUs, anaconda would probably be a better choice
for dependency management. The additional PyTest CI environment caught various
errors before deployment or a merge to the main line. Especially integration issues
that originated from changes made to low-level modules were caught reliably. Because
detecting such issues is very hard to do manually, the automated setup proved itself
to be very valuable.

PyTorch and its additional abstraction layers like PyTorch Lightning were also
a good choice, but in retrospect using the PyTorch abstraction layers from the be-
ginning would have saved some time during development. Most frameworks like Py-
Torch Lightning use the same APIs as vanilla PyTorch anyways and therefore no
development overhead is introduced. Although migrating from vanilla PyTorch to a
framework like PyTorch Lightning can be time costly. For this project PyTorch Light-
ning was indispensable because of their provided distributed training implementations
described thoroughly in chapter 2.7.

Regarding the machine learning models and their architectures, it was quite sur-
prising how few �eshed-out implementations of already existing video anomaly de-
tection architecture proposals are available by either the corresponding authors or
third-party �community� implementations. This of course made the evaluation of ar-
chitectures in the vehicle tra�c video surveillance domain signi�cantly more di�cult
and time intensive. Architectures had to be implemented �rst, checked for �correct-
ness� and only then an evaluation and experiments on the target domain could be
performed. As a consequence only around 20% of the overall work e�ort went into
getting the architecture to work with the target use case and the rest into implement-
ing and evaluating proposed architectures for �correctness�. This is also precisely the
reason why the decision was made to make all architecture implementations of this
thesis not only available to the public, but also make them comfortable to use for
other researchers.

Re�ecting on the various model architectures that were implemented and evaluated
in the context of this thesis, a faster pivot towards architectures that work on higher-
level data as with the graph neural network described in chapter 6.5 probably would
have been better. Ultimately working on the pixel level has too many drawbacks
that are hard limits of the medium itself. Chapters 6.1.3 and 6.1.3 come to mind.
Of course, creating an abstraction layer from the video-frame level isn't trivial either
and introduces signi�cant overhead but in retrospect would have probably been more
expedient.

Writing the thesis and the associated scienti�c work was done with a non-trivial
setup which proved itself to be very e�cient. Instead of writing pure LaTeX, the
markup language Org was used and transpiled to LaTeX using Emacs and then
further processed using a typical LaTeX pipeline. Org in combination with org-babel
allows for literate programming similar to a Jupyter notebook environment. This
means that the sources of all generated graphs and especially evaluation visualizations
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are embedded into the source �le of this thesis and they are automatically regenerated
as soon as the underlying data changes. Therefore, the results presented in this thesis
are easily reproducible and the underlying data can be accessed by others on demand.
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APPENDIX A

Appendix - Supplementary Evaluation Material

A.1 Spatio Temporal Convolutional Autoencoder

A.1.1 Avenue

Figure A.1: Precision recall curve achieved on the Avenue test dataset.

A.1.2 UCSD
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Figure A.2: Spatio Temporal Convolutional Autoencoder evaluation results on the
Avenue test dataset.

85



Figure A.3: Spatio Temporal Convolutional Autoencoder evaluation results on the
UCSD 1 test dataset.
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Figure A.4: Spatio Temporal Convolutional Autoencoder evaluation results on the
UCSD 2 test dataset.

87



A.2 FastAno

A.2.1 UCSD
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A.2.2 Avenue
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A.2.3 FKK

Figure A.5: Precision recall curve resulting from an evaluation on the e:fs FKK
dataset.

A.3 Convolutional LSTM Autoencoder

A.3.1 UCSD Anomaly Scores
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Figure A.6: Inferred regularity score graphs by the FastAno neural network architec-
ture for the e:fs FKK dataset.

Figure A.7: MSE reconstruction loss on the UCSD 1 dataset.
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Figure A.8: Regularity scores as a function of time.
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A.4 Convolutional LSTM Autoencoder with Lateral

Connections

A.4.1 UCSD Pedestrian 1 & 2 Dataset

Figure A.9: Evaluation results on the UCSD Pedestrian 2 dataset.

Figure A.10: Autoencoder architecture with convolutional LSTM lateral connections.
Inference results of the UCSD 1 test dataset.
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Figure A.11: Autoencoder architecture with convolutional LSTM lateral connections.
Inference results of the UCSD 2 test dataset.
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A.4.2 Avenue

Figure A.12: Inference results on the Avenue test dataset.
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A.4.3 Street Scene
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A.4.4 FKK
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A.5 Transformer

A.5.1 UCSD

Figure A.13: Transformer candidate model evaluation results on the UCSD 1 test
dataset.
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Figure A.14: Transformer test results on the UCSD 1 test dataset.
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A.5.2 Avenue

Figure A.15: ROC achieved by the transformer architecture on the Avenue test
dataset.

Figure A.16: Generated regularity score graphs from individual clips of the Avenue
test dataset.
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A.5.3 FKK Dataset
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APPENDIX B

Appendix - Documentation
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trafficanomalydetection.models.transformer module

Implementa!on inspired by ‘TransAnomaly: Video Anomaly Detec!on Using Video Vision
Transformer’.

Source: h"ps://ieeexplore.ieee.org/document/9525368

Bases: Module

A single U-Net like decoder block.

The architectecture is described in TranAnomaly.

Summary

1. First the main input X is propagated through a deconvolu!on layer (ConvTranspose2d).
2. The lateral connec!on is than stacked ontop the deconvolu!on output, which leads to

feature maps of channel .
3. Two convolu!ons each followed by a  non-linearity are used to reduce the stacked

feature maps to the output space: .

Perform a deconvolu!on with an op!onal lateral connec!on.

Parameters: X (torch.Tensor) – A torch tensor with shape 
lateral (Op!onal[torch.Tensor]) – Op!onally specify a lateral input of
shape 

Returns: A torch.Tensor of shape 

Bases: Module

The implementa!on of this module is based on ViViT.

Steps

1. First a patch generator is used to reduce each frame into patches of size patch-size and
projected to a vector of shape token_dim via a linear projec!on layer.

2. An addi!onally randomly ini!alized !mestep of shape  is conca!nated onto
each batch element resul!ng in the following transforma!on: 

.
3. To retain temporal informa!on a randomly ini!alized temporal embedding tensor is

added (not conca!nated!) to every !mestep.

class DecoderBlock(in_channels: int, out_channels: int, crop: int) [source]

2 × Cout

ReLU

2 × Cout → Cout

forward(X: Tensor, lateral: Op!onal[Tensor]) [source]

[B, Cin, H, W ]

[B, Cin, H, W ]

[B, Cout, H, W ]

training: bool

class TransformerBlock(input_size: tuple[int, int], token_dim: int = 512, temporal_layers: int = 1,
spa!al_layers: int = 3) [source]

[1, NP, D]

[B, T , NP, D] → [B, T + 1, NP, D]



4. To let the transformer learn temporal rela!ons for every patch, we collapse the batch and
 into a single axis. We pass this tensor of shape  into an

A"en!onModule featuring a Mul!headA"en!on module.
5. A#er the propaga!on through the temporal transformer module, we revert the

dimension collapse described in step 4: 
6. The tokens predicted by the temporal transformer for !mestep  can now be

extracted :math:`pred = [B, T+1, dots] and we can focus on learning spa!al rela!ons
between every patch.

7. The same A"en!onModule is used to learn spa!al rela!ons from the predicted tensor of
shape  (no reshape is necessary because we got rid of the temporal
dimension).

Conca!nates a predic!on token for  for every batch.

Parameters: X (torch.Tensor) – A batched tensor containing tokens of shape 

Returns: A tensor of shape 

Add the spa!al posi!on embeddings to the given tensor.

The spa!al embeddings vector has the same length as the number of tokens (patches) for
each !mestep. The same spa!al embedding value will be added for each value in a token.

Add temporal embeddings to tokens.

Propagates the input tensor X through a temporal and spa!al transformer module.

For more informa!on see module descrip!on.

Split the input image sequence into windows of size .

To set  use the class parameter $self.patch_size$.

Parameters: X (torch.Tensor) – Input tensor of shape 

NP [B ∗ NP, T + 1, D]

[B ∗ NP, T + 1, D] → [B, T + 1, NP, D]
T + 1

[B, NP, D]

add_prediction_token(X: Tensor)→ Tensor [source]

T + 1

[B, T , N , D]

[B, T + 1, N , D]

add_spatial_embeddings(X: Tensor)→ Tensor [source]

add_temporal_embeddings(X: Tensor) [source]

forward(X: Tensor) [source]

frame_count: int = 4

generate_patches(X: Tensor) [source]

P

P

[B, C, W , H]

patch_size: int = 2

token_dim: int = 512



Bases: BaseModel

Spa!o-temporal convolu!onal transformer architecture based on TransAnomaly.

how many !mesteps  the model should use to predict frame 

Type: int

loss func!on weight for the gradient loss

Type: float

adversarial (discriminator) training loss weight

Type: float

reconstruc!on weight loss

Type: float

difference loss weight

Type: float

dimensionality of the latent space

Type: int

how many temporal transformer layers the model should use

Type: int

how many spa!al transformer layers the model should use

Type: int

class VideoTransformerAutoencoder(config: dict) [source]

timesteps

T T + 1

gradient_loss_weight

discriminator_loss_weight

reconstruction_loss_weight

difference_loss_weight

token_dim

temporal_transformer_layers

spatial_transformer_layers



Choose what op!mizers and learning-rate schedulers to use in your op!miza!on. Normally
you’d need one. But in the case of GANs or similar you might have mul!ple.

Returns:
Any of these 6 op!ons.

Single op"mizer.
List or Tuple of op!mizers.
Two lists - The first list has mul!ple op!mizers, and the second has
mul!ple LR schedulers (or mul!ple lr_scheduler_config ).
Dic"onary, with an "optimizer"  key, and (op!onally) a "lr_scheduler"

key whose value is a single LR scheduler or lr_scheduler_config .
Tuple of dic"onaries as described above, with an op!onal "frequency"

key.
None - Fit will run without any op!mizer.

The lr_scheduler_config  is a dic!onary which contains the scheduler and its associated
configura!on. The default configura!on is shown below.

lr_scheduler_config = {
    # REQUIRED: The scheduler instance
    "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step'
    # updates it after a optimizer update.
    "interval": "epoch",
    # How many epochs/steps should pass between calls to
    # `scheduler.step()`. 1 corresponds to updating the learning
    # rate after every epoch/step.
    "frequency": 1,
    # Metric to to monitor for schedulers like `ReduceLROnPlateau`
    "monitor": "val_loss",
    # If set to `True`, will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping
    # training if not found. If set to `False`, it will only produce a warning
    "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
}

When there are schedulers in which the .step()  method is condi!oned on a value, such as
the torch.optim.lr_scheduler.ReduceLROnPlateau  scheduler, Lightning requires that the
lr_scheduler_config  contains the keyword "monitor"  set to the metric name that the

scheduler should be condi!oned on.

Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)  in your LightningModule .

! Note

The frequency  value specified in a dict along with the optimizer  key is an int
corresponding to the number of sequen!al batches op!mized with the specific op!mizer.
It should be given to none or to all of the op!mizers. There is a difference between

configure_optimizers() [source]



passing mul!ple op!mizers in a list, and passing mul!ple op!mizers in dic!onaries with a
frequency of 1:

In the former case, all op!mizers will operate on the given batch in each
op!miza!on step.
In the la"er, only one op!mizer will operate on the given batch at every step.

This is different from the frequency  value specified in the lr_scheduler_config

men!oned above.

def configure_optimizers(self):
    optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01)
    optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01)
    return [
        {"optimizer": optimizer_one, "frequency": 5},
        {"optimizer": optimizer_two, "frequency": 10},
    ]

In this example, the first op!mizer will be used for the first 5 steps, the second op!mizer
for the next 10 steps and that cycle will con!nue. If an LR scheduler is specified for an
op!mizer using the lr_scheduler  key in the above dict, the scheduler will only be
updated when its op!mizer is being used.

Examples:



# most cases. no learning rate scheduler
def configure_optimizers(self):
    return Adam(self.parameters(), lr=1e-3)

# multiple optimizer case (e.g.: GAN)
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
    return gen_opt, dis_opt

# example with learning rate schedulers
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
    dis_sch = CosineAnnealing(dis_opt, T_max=10)
    return [gen_opt, dis_opt], [dis_sch]

# example with step-based learning rate schedulers
# each optimizer has its own scheduler
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
    gen_sch = {
        'scheduler': ExponentialLR(gen_opt, 0.99),
        'interval': 'step'  # called after each training step
    }
    dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch
    return [gen_opt, dis_opt], [gen_sch, dis_sch]

# example with optimizer frequencies
# see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1
# https://arxiv.org/abs/1704.00028
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
    n_critic = 5
    return (
        {'optimizer': dis_opt, 'frequency': n_critic},
        {'optimizer': gen_opt, 'frequency': 1}
    )

! Note

Some things to know:

Lightning calls .backward()  and .step()  on each op!mizer and learning rate
scheduler as needed.
If you use 16-bit precision ( precision=16 ), Lightning will automa!cally handle the
op!mizers.
If you use mul!ple op!mizers, training_step()  will have an addi!onal
optimizer_idx  parameter.

If you use torch.optim.LBFGS , Lightning handles the closure func!on automa!cally
for you.
If you use mul!ple op!mizers, gradients will be calculated only for the parameters of
current op!mizer at each training step.
If you need to control how o#en those op!mizers step or override the default
.step()  schedule, override the optimizer_step()  hook.

difference_loss_weight: float = 0.1



Process a series of images to predict the next frame.

Parameters: X (torch.Tensor) – input frames with shape 

Returns: the predicted frame at  with shape 

Predicts frame T+n+1 from a series of frame [T, T+n].

Parameters: batch (-) – The first item should contain the input frame series and the
second element should be the groudn truth to the predic!on.firs
batch_idx (-) – current batch index

Dims:

Input Tensor: [B, T (self.!mesteps), C, W, H]
GT Tensor: [B, C, W, H]

Operates on a single batch of data from the test set. In this step you’d normally generate
examples or calculate anything of interest such as accuracy.

# the pseudocode for these calls
test_outs = []
for test_batch in test_data:
    out = test_step(test_batch)
    test_outs.append(out)
test_epoch_end(test_outs)

Parameters: batch – The output of your DataLoader .
batch_idx – The index of this batch.
dataloader_id – The index of the dataloader that produced this batch.
(only if mul!ple test dataloaders used).

Returns:

discriminator_loss_weight: float = 1

forward(X: Tensor) [source]

[B, T , C, H, W ]

T + 1 [B, C, H, W ]

gradient_loss_weight: float = 1

input_channels: int = 3

io_normalizer: Op!onal[list[trafficanomalydetec!on.data.preprocessing.scaling.Normalizer]] = None

predict_step(batch, batch_idx) [source]

reconstruction_loss_weight: float = 1

spatial_transformer_layers: int = 3

temporal_transformer_layers: int = 3

test_step(batch, batch_idx) [source]



Returns:
Any of.

Any object or value
None  - Tes!ng will skip to the next batch

# if you have one test dataloader:
def test_step(self, batch, batch_idx):
    ...

# if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx=0):
    ...

Examples:

# CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)

    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

    # log the outputs!
    self.log_dict({'test_loss': loss, 'test_acc': test_acc})

If you pass in mul!ple test dataloaders, test_step()  will have an addi!onal argument. We
recommend se%ng the default value of 0 so that you can quickly switch between single and
mul!ple dataloaders.

# CASE 2: multiple test dataloaders
def test_step(self, batch, batch_idx, dataloader_idx=0):
    # dataloader_idx tells you which dataset this is.
    ...

! Note

If you don’t need to test you don’t need to implement this method.

! Note

When the test_step()  is called, the model has been put in eval mode and PyTorch
gradients have been disabled. At the end of the test epoch, the model goes back to
training mode and gradients are enabled.



Here you compute and return the training loss and some addi!onal metrics for e.g. the
progress bar or logger.

Parameters: batch ( Tensor  | ( Tensor , …) | [ Tensor , …]) – The output of your DataLoader . A
tensor, tuple or list.
batch_idx ( int ) – Integer displaying index of this batch
op"mizer_idx ( int ) – When using mul!ple op!mizers, this argument will also be
present.
hiddens ( Any ) – Passed in if
:paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bp"_steps`
> 0.

Returns:
Any of.

Tensor  - The loss tensor
dict  - A dic!onary. Can include any keys, but must include the key 'loss'

None  - Training will skip to the next batch. This is only for automa"c op"miza"on.

This is not supported for mul!-GPU, TPU, IPU, or DeepSpeed.

In this step you’d normally do the forward pass and calculate the loss for a batch. You can
also do fancier things like mul!ple forward passes or something model specific.

Example:

def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss

If you define mul!ple op!mizers, this step will be called with an addi!onal optimizer_idx

parameter.

# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx, optimizer_idx):
    if optimizer_idx == 0:
        # do training_step with encoder
        ...
    if optimizer_idx == 1:
        # do training_step with decoder
        ...

If you add truncated back propaga!on through !me you will also get an addi!onal argument
with the hidden states of the previous step.

timesteps: int

token_dim: int = 512

training_step(batch, batch_idx) [source]



# Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
    # hiddens are the hidden states from the previous truncated backprop step
    out, hiddens = self.lstm(data, hiddens)
    loss = ...
    return {"loss": loss, "hiddens": hiddens}

! Note

The loss value shown in the progress bar is smoothed (averaged) over the last values, so
it differs from the actual loss returned in train/valida!on step.

Predicts frame T+n+1 from a series of frame [T, T+n].

Parameters: batch (-) – The first item should contain the input frame series and the
second element should be the groudn truth to the predic!on.firs
batch_idx (-) – current batch index

Dims:

Input Tensor: [B, T (self.!mesteps), C, W, H]
GT Tensor: [B, C, W, H]

Calculate the anomaly score of a single image by comparing the most different patches of two
images.

Parameters: predic"on (-) – Image of shape 
ground_truth (-) – image of shape 
patch_size (-) – the patch height and width
p (-) – the top patches to take into account

Returns:
the final PSNR value as a torch scalar
a matrix with individual mse values for each patch 

Calculate the difference loss as defined in TransAnomaly.

Parameters: x1 (-) – predicted frame at 
y1 (-) – ground_truth at 
x2 (-) – predicted frame at 
y2 (-) – ground_truth at 

Returns: a single torch scalar as a Tensor

validation_step(batch, batch_idx) [source]

anomaly_score_patched(predic!on: ~torch.Tensor, ground_truth: ~torch.Tensor, patch_size: int = 64, p: int = 3,
diff_fn: callable = <func!on mse_loss>) [source]

[C, W , H]
[C, W , H]

[T , T , 1]

difference_loss(x1: Tensor, y1: Tensor, x2: Tensor, y2: Tensor) [source]

T + 1
T + 1

T + 2
T + 2

gradient_loss(predic!on: Tensor, ground_truth: Tensor) [source]



Calculate the mean  difference between the gradients of two images or series of images.

Module contents

Bases: Enum

An enumera!on.

L1

class ModelType(value) [source]

AUTOENCODER= 'autoencoder'

FAST_ANO= 'fastano'

FFP= 'FFP'

LSTM_AUTOENCODER= 'lstm_autoencoder'

TRANSFORMER= 'transformer'

get_model(model: ModelType, config: TrainingConfig) [source]

get_preprocessor(model: ModelType, config: TrainingConfig) [source]
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